Molecular information gathering and proces- sing -- a young field of applied chemistry -- is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening ...Molecular information gathering and proces- sing -- a young field of applied chemistry -- is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as 'lab-on-a-molecule' and molecular key- pad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.展开更多
In this study,the DNA logic computing model is established based on the methods of DNA self-assembly and strand branch migration.By adding the signal strands,the preprogrammed signals are released with the disintegrat...In this study,the DNA logic computing model is established based on the methods of DNA self-assembly and strand branch migration.By adding the signal strands,the preprogrammed signals are released with the disintegrating of initial assembly structures.Then,the computing results are able to be detected by gel electrophoresis.The whole process is controlled automatically and parallely,even triggered by the mixture of input signals.In addition,the conception of single polar and bipolar is introduced into system designing,which leads to synchronization and modularization.Recognizing the specific signal DNA strands,the computing model gives all correct results by gel experiment.展开更多
The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster ...The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.展开更多
One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral...One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.展开更多
A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time rema...A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.展开更多
A charge transfer hydrogen bonded complex between the electron donor (proton acceptor) 2-amino-4,6-dimethylpyridine with the electron acceptor (proton donor) chloranilic acid has been synthesized and studied experimen...A charge transfer hydrogen bonded complex between the electron donor (proton acceptor) 2-amino-4,6-dimethylpyridine with the electron acceptor (proton donor) chloranilic acid has been synthesized and studied experimentally and theoretically. The stability constant recorded high values indicating the high stability of the formed complex. In chloroform, ethanol, methanol and acetonitrile were found the stoichiometric ratio 1:1. The solid complex was prepared and characterized by different spectroscopy techniques. FTIR, 1H and 13C NMR studies supported the presence of proton and charge transfers in the formed complex. Complemented with experimental results, molecular modelling using the density functional theory (DFT) calculations was carried out in the gas, chloroform and methanol phases where the existence of charge and hydrogen transfers. Finally, a good consistency between experimental and theoretical calculations was found confirming that the applied basis set is the suitable one for the system under investigation.展开更多
文摘Molecular information gathering and proces- sing -- a young field of applied chemistry -- is undergoing good growth. The progress is occurring both in terms of conceptual development and in terms of the strengthening of older concepts with new examples. This review critically surveys these two broad avenues. We consider some cases where molecules emulate one of the building blocks of electronic logic gates. We then examine molecular emulation of various Boolean logic gates carrying one, two or three inputs. Some single-input gates are popular information gathering devices. Special systems, such as 'lab-on-a-molecule' and molecular key- pad locks, also receive attention. A situation deviating from the Boolean blueprint is also discussed. Some pointers are offered for maintaining the upward curve of the field.
基金supported by the National Natural Science Foundation of China (61127005,61133010,61033003,60910002 and 61143003)Ph.D.Programs Foundation of the Ministry of Education of China (20110001130016)the Postdoctoral Special and Normal Science Foundation of China(201104018,20100480128,2011M500197)
文摘In this study,the DNA logic computing model is established based on the methods of DNA self-assembly and strand branch migration.By adding the signal strands,the preprogrammed signals are released with the disintegrating of initial assembly structures.Then,the computing results are able to be detected by gel electrophoresis.The whole process is controlled automatically and parallely,even triggered by the mixture of input signals.In addition,the conception of single polar and bipolar is introduced into system designing,which leads to synchronization and modularization.Recognizing the specific signal DNA strands,the computing model gives all correct results by gel experiment.
基金Supported by the National Natural Science Foundation of China under Grant No 10774192, the Fund of Innovation of Graduate School of National University of Defense Technology under Grant No 080201.
文摘The generation of various entangled states is an essential task in quantum information processing. Recently, a scheme (PRA 79, 022304) has been suggested for generating Greenberger-Horne-Zeilinger state and cluster state with atomic ensembles based on the Rydberg blockade. Using similar resources as the earlier scheme, here we propose an experimentally feasible scheme of preparing arbitrary four-qubit W class of maximally and non- maximally entangled states with atomic ensembles in a single step. Moreover, we carefully analyze the realistic noises and predict that four-qubit W states can be produced with high fidelity (F - 0.994) via our scheme.
文摘One-dimensional deposition of a neutral chromium atomic beam focused by a near-resonant Gaussian standing- laser field is discussed by using a fourth-order Runge-Kutta type algorithm. The deposition pattern of neutral chromium atoms in a laser standing wave with different laser power is discussed and the simulation result shows that the full width at half maximum (FWHM) of a nanometer stripe is 115nm and the contrast is 2.5:1 with laser power 3.93mW; the FWHM is 0.8nm and the contrast is 27:1 with laser power 16mW, the optimal laser power; but with laser power increasing to 50mW, the nanometer structure forms multi-crests and the quality worsens quickly with increasing laser power.
文摘A protocol is proposed to implement a three-qubit phase gate for photonic qubits in a three-mode cavity. The idea can be extended to directly implement a N-qubit phase gate. We also show that the interaction time remains unchanged with the increasing number of qubits. In addition, the influence of cavity decay and atomic spontaneous emission on the gate fidelity and photon loss probability is also discussed by numerical calculation.
文摘A charge transfer hydrogen bonded complex between the electron donor (proton acceptor) 2-amino-4,6-dimethylpyridine with the electron acceptor (proton donor) chloranilic acid has been synthesized and studied experimentally and theoretically. The stability constant recorded high values indicating the high stability of the formed complex. In chloroform, ethanol, methanol and acetonitrile were found the stoichiometric ratio 1:1. The solid complex was prepared and characterized by different spectroscopy techniques. FTIR, 1H and 13C NMR studies supported the presence of proton and charge transfers in the formed complex. Complemented with experimental results, molecular modelling using the density functional theory (DFT) calculations was carried out in the gas, chloroform and methanol phases where the existence of charge and hydrogen transfers. Finally, a good consistency between experimental and theoretical calculations was found confirming that the applied basis set is the suitable one for the system under investigation.