A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th...A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.展开更多
An HYSYS model for the crude distillation unit of the Port Harcourt Refining Company has been developed. The HYSYS model developed includes 3 mixers, 3 heaters, 1 heat exchanger, 1 desalter (3-phase separator), 2-phas...An HYSYS model for the crude distillation unit of the Port Harcourt Refining Company has been developed. The HYSYS model developed includes 3 mixers, 3 heaters, 1 heat exchanger, 1 desalter (3-phase separator), 2-phase separator and the main fractionating column. The raw crude was characterized using Aspen HYSYS version 8.8 and the developed model was simulated with the industrial plant data from the Port Harcourt Refining Company. The HYSYS model gave component mole fractions of 0.2677, 0.1572, 0.2687, 0.0547, 0.2517 for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue and when compared to plant mole fractions of 0.2710, 0.1560, 0.2650, 0.0530, 0.2550 gave a maximum deviation of 3.2%. The HYSYS model was also able to predict the temperature and the tray of withdrawal for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue as follows: tray 1 (120<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 12 (206<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 25 (215<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 35 (310<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C) and tray 48 (320<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C) which was also compared with plant data and gave a maximum deviation 23.2%. The HYSYS model was then optimized using Sequential Quadratic Programming (SQP) with the industrial plant data as starting values of operating conditions. The optimization increased the mass flow rate of Naphtha product from 7.512E+004 kg/hr to 7.656E+004 kg/hr, Kerosene product from 5.183E+004 kg/hr to 5.239E+004 kg/hr, Light Diesel Oil (LDO) product from 1.105E+005 kg/hr to 1.112E+005 kg/hr, Heavy Diesel Oil (展开更多
In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realiz...In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realization different metal work-function electrodes are used to induce n+ and p+ regions on undoped strained silicon-on-insulator(sSOI or SiGe) to realize emitter, base, and collector regions of the BCPT. Here,by using a calibrated 2-D TCAD simulation the impact of a Si mole fraction x(in SiGe) on device performance metrics is investigated. The analysis demonstrates the band gap lowering with decreasing Si content or effective strain on the Si layer, and its subsequent advantages. This work reports a significant improvement in current gain, cutoff frequency, and lower collector breakdown voltage(BVCEO) for the proposed structure over the conventional device. The effect of varying temperature on the strained Si layer and its implications on the device performance is also investigated. The analysis demonstrates a fair device-level understanding and exhibits the immense potential of the SiGematerial as the device layer. In addition to this, using extensive 2-D mixed-mode TCAD simulation, a considerable improvement in switching transient times are also observed compared to its conventional counterpart.展开更多
We have determined integral excess free energy of mixing, heat of mixing and entropy of mixing of NaPb alloys in molten state at 700 K. The observed asymmetry in the properties of mixing of NaPb alloy in molten state ...We have determined integral excess free energy of mixing, heat of mixing and entropy of mixing of NaPb alloys in molten state at 700 K. The observed asymmetry in the properties of mixing of NaPb alloy in molten state is successfully explained on the basis of regular associated solution model. The theoretical analysis reveals that the pairwise interaction energies between the species depend considerably on temperature.展开更多
The potential impact of GaN-based high electron mobility transistor (HEMT) with two channel layers of GaN/InAlGaN is reported. Using two-dimensional and two-carrier device simulations, we investigate the device perfor...The potential impact of GaN-based high electron mobility transistor (HEMT) with two channel layers of GaN/InAlGaN is reported. Using two-dimensional and two-carrier device simulations, we investigate the device performance focusing on the electrical potential, electron concentration, breakdown voltage and transconductance (gm). Also, the results have been compared with structure of AlGaN/GaN HEMT. Our simulation results reveal that the proposed structure increases electron concentration, breakdown voltage and transconductance;and reduces the leakage current. Also, the mole fraction of aluminum in the InAlGaN has been optimized to create the best performing device.展开更多
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Chinese Academy of Sciences Talent Introduction Youth Program(No.SINAP-YCJH-202303)Chinese Academy of Sciences Special Research Assistant Funding Project and Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2021-003)。
文摘A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.
文摘An HYSYS model for the crude distillation unit of the Port Harcourt Refining Company has been developed. The HYSYS model developed includes 3 mixers, 3 heaters, 1 heat exchanger, 1 desalter (3-phase separator), 2-phase separator and the main fractionating column. The raw crude was characterized using Aspen HYSYS version 8.8 and the developed model was simulated with the industrial plant data from the Port Harcourt Refining Company. The HYSYS model gave component mole fractions of 0.2677, 0.1572, 0.2687, 0.0547, 0.2517 for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue and when compared to plant mole fractions of 0.2710, 0.1560, 0.2650, 0.0530, 0.2550 gave a maximum deviation of 3.2%. The HYSYS model was also able to predict the temperature and the tray of withdrawal for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue as follows: tray 1 (120<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 12 (206<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 25 (215<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C), tray 35 (310<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C) and tray 48 (320<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>C) which was also compared with plant data and gave a maximum deviation 23.2%. The HYSYS model was then optimized using Sequential Quadratic Programming (SQP) with the industrial plant data as starting values of operating conditions. The optimization increased the mass flow rate of Naphtha product from 7.512E+004 kg/hr to 7.656E+004 kg/hr, Kerosene product from 5.183E+004 kg/hr to 5.239E+004 kg/hr, Light Diesel Oil (LDO) product from 1.105E+005 kg/hr to 1.112E+005 kg/hr, Heavy Diesel Oil (
基金the Key Project of the National Natural Science Foundation of China(21327803)the Program of Science&Technology Development of Jilin Province(20130305005GX,20150101035JC)the Key Projects of Changchun Science and Technology Bureau(14KJ041)
文摘In this manuscript we analyze a unique approach to improve the performance of the bipolar charge plasma transistor(BCPT) by introducing a strained Si/SiGe1-x layer as the active device region. For charge plasma realization different metal work-function electrodes are used to induce n+ and p+ regions on undoped strained silicon-on-insulator(sSOI or SiGe) to realize emitter, base, and collector regions of the BCPT. Here,by using a calibrated 2-D TCAD simulation the impact of a Si mole fraction x(in SiGe) on device performance metrics is investigated. The analysis demonstrates the band gap lowering with decreasing Si content or effective strain on the Si layer, and its subsequent advantages. This work reports a significant improvement in current gain, cutoff frequency, and lower collector breakdown voltage(BVCEO) for the proposed structure over the conventional device. The effect of varying temperature on the strained Si layer and its implications on the device performance is also investigated. The analysis demonstrates a fair device-level understanding and exhibits the immense potential of the SiGematerial as the device layer. In addition to this, using extensive 2-D mixed-mode TCAD simulation, a considerable improvement in switching transient times are also observed compared to its conventional counterpart.
文摘We have determined integral excess free energy of mixing, heat of mixing and entropy of mixing of NaPb alloys in molten state at 700 K. The observed asymmetry in the properties of mixing of NaPb alloy in molten state is successfully explained on the basis of regular associated solution model. The theoretical analysis reveals that the pairwise interaction energies between the species depend considerably on temperature.
文摘The potential impact of GaN-based high electron mobility transistor (HEMT) with two channel layers of GaN/InAlGaN is reported. Using two-dimensional and two-carrier device simulations, we investigate the device performance focusing on the electrical potential, electron concentration, breakdown voltage and transconductance (gm). Also, the results have been compared with structure of AlGaN/GaN HEMT. Our simulation results reveal that the proposed structure increases electron concentration, breakdown voltage and transconductance;and reduces the leakage current. Also, the mole fraction of aluminum in the InAlGaN has been optimized to create the best performing device.