In recent years,electrically conductive hydrogel-based nerve guidance conduits(NGCs)have yielded promising results for treating peripheral nerve injuries(PNIs).However,developed ones are generally pre-manufactured and...In recent years,electrically conductive hydrogel-based nerve guidance conduits(NGCs)have yielded promising results for treating peripheral nerve injuries(PNIs).However,developed ones are generally pre-manufactured and exhibit a limited ability to achieve good contact with nerve tissue with irregu-lar surfaces.Herein,we developed a plasticine-like electrically conductive hydrogel consisting of gelatin,conducting polypyrrole,and tannic acid(named GPT)and assessed its ability to promote peripheral nerve regeneration.The shape-persistent GPT hydrogel exhibited good self-healing properties and could easily be molded to form a conduit that could match any injured nerve tissue.Their electrical properties could be tuned by changing the PPy concentration.In vitro,the improved conductivity of the hydrogel pro-moted dorsal root ganglion(DRG)axonal extension.More importantly,we found that the GPT hydrogel enhanced axonal regeneration and remyelination in vivo,preventing denervation atrophy and enhancing functional recovery in a mice model of sciatic nerve injury.These results suggest that our plasticine-like NGC has huge prospects for clinical application in the repair of PNI.展开更多
Nowadays,there are some problems in the area of distributed operating system(DOS)and its research methods.To solve these problems,we have provided a Distributed Operat-ing System Auto-generating System(DOSAGS)model,wh...Nowadays,there are some problems in the area of distributed operating system(DOS)and its research methods.To solve these problems,we have provided a Distributed Operat-ing System Auto-generating System(DOSAGS)model,which is characterized by intelli-gence,integration and moldability.DOSAGS’ system structure,functions,work principlesand key problems in its implementation are presented.It is obvious that the DOS generatedby DOSAGS is a real new generation distributed OS.展开更多
A simple strategy was developed to prepare a tough, self-healing, antibacterial and moldable hydrogel by introducing the natural polyphenolic compound tannic acid(TA) as a cross-linking center for hydrogen bonds. Poly...A simple strategy was developed to prepare a tough, self-healing, antibacterial and moldable hydrogel by introducing the natural polyphenolic compound tannic acid(TA) as a cross-linking center for hydrogen bonds. Polyvinyl alcohol(PVA)-TA hydrogel was prepared by physical mixing using PVA as a main component and TA as a cross-linker. There were two types of physical cross linking bonds in the PVA-TA hydrogel network, which were weaker hydrogen bonds between PVA molecular chains and stronger hydrogen bonds between PVA and TA molecules. The mechanical properties and self-healing ability could be adjusted by changing the contents of PVA and TA. The hydrogel possessed not only high mechanical strength(305 kPa tensile strength and 864 kPa compressive strength), moldability and excellent self-healing properties(95% selfhealing efficiency) but also good antibacterial abilities against S. aureus and E. coli. In addition, after soaking the dried hydrogel in 90 ℃ deionized water for 4 h, they could also regain their self-healing ability to a certain extent. The hydrogels have potential applications in the biomedical fields.展开更多
To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM...To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.展开更多
Moldability evaluation for molded parts, which is the basis of concurrent design, is a key design stage in injection molding design. By moldability evaluation the design problems can be found timely and an optimum pla...Moldability evaluation for molded parts, which is the basis of concurrent design, is a key design stage in injection molding design. By moldability evaluation the design problems can be found timely and an optimum plastic part design achieved. In this paper, a systematic methodology for moldability evaluation based on fuzzy logic is proposed. Firstly, fuzzy set modeling for six key design attributes of molded parts is carried out respectively. Secondly, on the basis of this, the relationship between fuzzy sets for design attributes and fuzzy sets for moldability is established by fuzzy rules that are based on domain experts’ experience and knowledge. At last the integral moldability for molded parts is obtained through fuzzy reasoning. The neural network based fuzzy reasoning approach presented in this paper can improve fuzzy reasoning efficiency greatly, especially for system having a large number of rules and complicated membership functions. An example for moldability evaluation is given to show the feasibility of this proposed methodology.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51932002 and 51903087)the Science and Technology Innovation Team Project of Foshan(No.2018IT100101)the Joint Fund of Ministry of Education for Equipment Preresearch(No.6141A02022632).
文摘In recent years,electrically conductive hydrogel-based nerve guidance conduits(NGCs)have yielded promising results for treating peripheral nerve injuries(PNIs).However,developed ones are generally pre-manufactured and exhibit a limited ability to achieve good contact with nerve tissue with irregu-lar surfaces.Herein,we developed a plasticine-like electrically conductive hydrogel consisting of gelatin,conducting polypyrrole,and tannic acid(named GPT)and assessed its ability to promote peripheral nerve regeneration.The shape-persistent GPT hydrogel exhibited good self-healing properties and could easily be molded to form a conduit that could match any injured nerve tissue.Their electrical properties could be tuned by changing the PPy concentration.In vitro,the improved conductivity of the hydrogel pro-moted dorsal root ganglion(DRG)axonal extension.More importantly,we found that the GPT hydrogel enhanced axonal regeneration and remyelination in vivo,preventing denervation atrophy and enhancing functional recovery in a mice model of sciatic nerve injury.These results suggest that our plasticine-like NGC has huge prospects for clinical application in the repair of PNI.
基金Software-Engineering National Key Laboratory of Wuhan University.
文摘Nowadays,there are some problems in the area of distributed operating system(DOS)and its research methods.To solve these problems,we have provided a Distributed Operat-ing System Auto-generating System(DOSAGS)model,which is characterized by intelli-gence,integration and moldability.DOSAGS’ system structure,functions,work principlesand key problems in its implementation are presented.It is obvious that the DOS generatedby DOSAGS is a real new generation distributed OS.
基金Funded by the National Natural Science Foundation of China(Nos.51773161,51303145,51373130,and 21975057)the Special Project of Technological Innovation of Hubei Province(No.2019ABA115)
文摘A simple strategy was developed to prepare a tough, self-healing, antibacterial and moldable hydrogel by introducing the natural polyphenolic compound tannic acid(TA) as a cross-linking center for hydrogen bonds. Polyvinyl alcohol(PVA)-TA hydrogel was prepared by physical mixing using PVA as a main component and TA as a cross-linker. There were two types of physical cross linking bonds in the PVA-TA hydrogel network, which were weaker hydrogen bonds between PVA molecular chains and stronger hydrogen bonds between PVA and TA molecules. The mechanical properties and self-healing ability could be adjusted by changing the contents of PVA and TA. The hydrogel possessed not only high mechanical strength(305 kPa tensile strength and 864 kPa compressive strength), moldability and excellent self-healing properties(95% selfhealing efficiency) but also good antibacterial abilities against S. aureus and E. coli. In addition, after soaking the dried hydrogel in 90 ℃ deionized water for 4 h, they could also regain their self-healing ability to a certain extent. The hydrogels have potential applications in the biomedical fields.
基金This work was supported by the National Natural Science Foundation of Chira(project No.50044012)the Natural Science Foundation of Hunan Provience(project No.99JJYY20048).
文摘To successfully employ powder injection molding (PIM) as a manufacturing technique, the function of the component, design of the part, material and process should be optimized for overall processing ability of the PIM process. A comparison between the requirements of flowability and moldability and the compacts shape retention has been made in this work. There is often a contradiction between the requirements of flowability and the compacts shape retention. Many works have been done to attain good molding conditions. However, they fail to take into account the effect of some factors that satisfies good molding conditions on the compacts shape retention during debinding. This paper studies the effect of the powder-binder mixture characteristics and the molding conditions on the flowability and moldability and the shape retention of PIM compacts during debinding process so as to attain the benefits of each.
文摘Moldability evaluation for molded parts, which is the basis of concurrent design, is a key design stage in injection molding design. By moldability evaluation the design problems can be found timely and an optimum plastic part design achieved. In this paper, a systematic methodology for moldability evaluation based on fuzzy logic is proposed. Firstly, fuzzy set modeling for six key design attributes of molded parts is carried out respectively. Secondly, on the basis of this, the relationship between fuzzy sets for design attributes and fuzzy sets for moldability is established by fuzzy rules that are based on domain experts’ experience and knowledge. At last the integral moldability for molded parts is obtained through fuzzy reasoning. The neural network based fuzzy reasoning approach presented in this paper can improve fuzzy reasoning efficiency greatly, especially for system having a large number of rules and complicated membership functions. An example for moldability evaluation is given to show the feasibility of this proposed methodology.