The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estima...The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities.展开更多
Decomposition of soil organic matter(SOM) is of importance for CO_2 exchange between soil and atmosphere and soil temperature and moisture are considered as two important factors controlling SOM decomposition. In this...Decomposition of soil organic matter(SOM) is of importance for CO_2 exchange between soil and atmosphere and soil temperature and moisture are considered as two important factors controlling SOM decomposition. In this study, soil samples were collected at 5 elevations ranging from 753 to 2 357 m on the Changbai Mountains in Northeast China, and incubated under different temperatures(5, 10, 15, 20, 25, and 30?C) and soil moisture levels(30%, 60%, and 90% of saturated soil moisture) to investigate the effects of both on SOM decomposition and its temperature sensitivity at different elevations. The results showed that incubation temperature(F = 1 425.10, P < 0.001), soil moisture(F = 1 327.65, P < 0.001), and elevation(F = 1 937.54, P < 0.001) all had significant influences on the decomposition rate of SOM. The significant effect of the interaction of incubation temperature and soil moisture on the SOM decomposition rate was observed at all the 5 sampling elevations(P < 0.001). A two-factor model that used temperature and moisture as variables fitted the SOM decomposition rate well(P < 0.001) and could explain 80%–93% of the variation of SOM decomposition rate at the 5 elevations. Temperature sensitivity of SOM decomposition, expressed as the change of SOM decomposition rate in response to a 10?C increase in temperature(Q_(10)), was significantly different among the different elevations(P < 0.01), but no apparent trend with elevation was discernible. In addition, soil moisture and incubation temperature both had great impacts on the Q_(10) value(P < 0.01), which increased significantly with increasing soil moisture or incubation temperature. Furthermore, the SOM decomposition rate was significantly related to soil total Gram-positive bacteria(R^2= 0.33, P < 0.01) and total Gram-negative bacteria(R^2= 0.58, P < 0.001). These findings highlight the importance of soil moisture to SOM decomposition and its Q_(10) value,which needs to be emphasized under warming climate scenarios.展开更多
Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltr...Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.展开更多
利用2008年1月1日至2009年9月31日黑河流域阿柔冻融观测站的气象和土壤水分数据,采用基于方差的多参数敏感性分析方法研究通用陆面模型(Common Land Model,CoLM)模拟的土壤水分对土壤质地(砂土和黏土)的敏感性,进而采用SCE-UA参数优化...利用2008年1月1日至2009年9月31日黑河流域阿柔冻融观测站的气象和土壤水分数据,采用基于方差的多参数敏感性分析方法研究通用陆面模型(Common Land Model,CoLM)模拟的土壤水分对土壤质地(砂土和黏土)的敏感性,进而采用SCE-UA参数优化算法分别优化土壤质地和土壤水力参数,分析不同优化策略对土壤水分模拟结果的影响。研究结果表明,浅层土壤水分对土壤质地较为敏感,敏感性系数达到了0.45以上,并且砂土含量对土壤水分的影响更为显著;利用SCE-UA算法优化土壤质地或土壤水力参数都可以有效地提高土壤水分的模拟精度,优化土壤水力参数易产生"异参同效"现象,而优化土壤质地能够使土壤水力参数的取值范围更加合理。展开更多
基金Supported by the National Natural Science Foundation of China(30470306, 30570350)Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX2-SW-120)
文摘The spatial and temporal variations in soil respiration and its relationship with biophysical factors In forests near the Tropic of Cancer remain highly uncertain. To contribute towards an Improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured In three successional subtropical forests at the Dlnghuahan Nature Reserve (DNR) In southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and Its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared In successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates In the cool dry season (October-March). Soil respiration measured at these forests showed a clear Increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate In the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm^2 per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm^2 per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm^2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation In DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture Increased with progressive succession processes. This increase is caused, in part, by abundant respirators In advanced-successional forest, where more soil moisture is needed to maintain their activities.
基金supported by the National Natural Science Foundation of China(No.31290221)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050601)the Program for “Kezhen” Distinguished Talents in the Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.2013RC102)
文摘Decomposition of soil organic matter(SOM) is of importance for CO_2 exchange between soil and atmosphere and soil temperature and moisture are considered as two important factors controlling SOM decomposition. In this study, soil samples were collected at 5 elevations ranging from 753 to 2 357 m on the Changbai Mountains in Northeast China, and incubated under different temperatures(5, 10, 15, 20, 25, and 30?C) and soil moisture levels(30%, 60%, and 90% of saturated soil moisture) to investigate the effects of both on SOM decomposition and its temperature sensitivity at different elevations. The results showed that incubation temperature(F = 1 425.10, P < 0.001), soil moisture(F = 1 327.65, P < 0.001), and elevation(F = 1 937.54, P < 0.001) all had significant influences on the decomposition rate of SOM. The significant effect of the interaction of incubation temperature and soil moisture on the SOM decomposition rate was observed at all the 5 sampling elevations(P < 0.001). A two-factor model that used temperature and moisture as variables fitted the SOM decomposition rate well(P < 0.001) and could explain 80%–93% of the variation of SOM decomposition rate at the 5 elevations. Temperature sensitivity of SOM decomposition, expressed as the change of SOM decomposition rate in response to a 10?C increase in temperature(Q_(10)), was significantly different among the different elevations(P < 0.01), but no apparent trend with elevation was discernible. In addition, soil moisture and incubation temperature both had great impacts on the Q_(10) value(P < 0.01), which increased significantly with increasing soil moisture or incubation temperature. Furthermore, the SOM decomposition rate was significantly related to soil total Gram-positive bacteria(R^2= 0.33, P < 0.01) and total Gram-negative bacteria(R^2= 0.58, P < 0.001). These findings highlight the importance of soil moisture to SOM decomposition and its Q_(10) value,which needs to be emphasized under warming climate scenarios.
基金This work was jointly supported by the National Natural Science Foundation of China under Grant No. 40205012, and 40201048, the Chinese NKBRSF Project G1999043400 and the Foundation of the China Ministry of Education (Grant No. 20010284027). The computat
文摘Considering a detailed hydrologic model in the land surface scheme helps to improve the simulation of regional hydro-climatology. A hydrologic model, which includes spatial heterogeneities in precipitation and infiltration, is constructed and incorporated into the land surface scheme BATS. Via the coupled-model (i.e., a regional climate model) simulations, the following major conclusions are obtained: the simulation of surface hydrology is sensitive to the inclusion of heterogeneities in precipitation and infiltration; the runoff ratio is increased after considering the infiltration heterogeneity, a result which is more consistent with the observations of surface moisture balance over humid areas; the introduction of the parameterization of infiltration heterogeneity can have a greater influence on the regional hydro-climatology than the precipitation heterogeneity; and the consideration of the impermeable fraction for the region reveals some features that are closer to the trend of aridification over northern China.
文摘利用2008年1月1日至2009年9月31日黑河流域阿柔冻融观测站的气象和土壤水分数据,采用基于方差的多参数敏感性分析方法研究通用陆面模型(Common Land Model,CoLM)模拟的土壤水分对土壤质地(砂土和黏土)的敏感性,进而采用SCE-UA参数优化算法分别优化土壤质地和土壤水力参数,分析不同优化策略对土壤水分模拟结果的影响。研究结果表明,浅层土壤水分对土壤质地较为敏感,敏感性系数达到了0.45以上,并且砂土含量对土壤水分的影响更为显著;利用SCE-UA算法优化土壤质地或土壤水力参数都可以有效地提高土壤水分的模拟精度,优化土壤水力参数易产生"异参同效"现象,而优化土壤质地能够使土壤水力参数的取值范围更加合理。