In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to...In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to analyze the impact of moist processes on the development of meso-β scale vortices(MβV) and their triggering by mesoscale wind perturbation(MWP). In the experiment in which the latent heat feedback(LHF) scheme was switched off, a stable low-level col field(i.e., saddle field—a region between two lows and two highs in the isobaric surface) formed, and the MWP triggered a weak MβV. However, when the LHF scheme was switched on as the MWP was introduced into the model, the MβV developed quickly and intense rainfall and a mesoscale low-level jet(mLLJ) were generated. The thickness of the air column and average temperature between 400 and 700 hPa decreased without the feedback of latent heat, whereas they increased quickly when the LHF scheme was switched on, with the air pressure falling at low levels but rising at upper levels. A schematic representation of the positive feedbacks among the mesoscale vortex, rainfall, and mLLJ shows that in the initial stage of the MβV, the MWP triggers light rainfall and the latent heat occurs at low levels, which leads to weak convergence and ageostrophic winds. In the mature stage of the MβV, convection extends to the middle-to-upper levels, resulting in an increase in the average temperature and a stretching of the air column. A low-level cyclonic circulation forms under the effect of Coriolis torque, and the m LLJ forms to the southeast of the MβV.展开更多
Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue...Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.展开更多
Tumor infiltrating lymphocytes (TILs) are used in evaluating the prognosis and determining treatment of different types of cancer with variable degrees of success. The usage of checkpoint inhibitor immunotherapy as a ...Tumor infiltrating lymphocytes (TILs) are used in evaluating the prognosis and determining treatment of different types of cancer with variable degrees of success. The usage of checkpoint inhibitor immunotherapy as a treatment variety for cancer and Adoptive cell therapy is associated with many complications, severe side effects and high expenses. Recently, in a limited number of metastatic GIT and breast cancers, the identification of T-cell specific against so-called tumor neo-antigens and Adoptive transfer of those lymphocytes resulted in some improvement. In 2020, Detection of a T cell receptor (TCR) in a T cell clone that recognized and killed most human cancer cell lines in vitro via the monomorphic MHC class I-related protein MR1, offers an opportunity for pan-cancer therapy Twenty three years earlier, Moist Heat was used successfully to activate a whole different and new immune response that was able to detect genetic mutation in the affected cancer cells and cured many cases of squamous and basal cell carcinomas. In this commentary review, we aimed to revise the literature for updates of TILs usage in cancer prognosis and treatment.展开更多
基金supported by the National Grand Fundamental Research 973 Program of China (Grant No.2015CB452800)the National Natural Science Foundation of China (Grant Nos.41275099,41205073 and 41275012)the Natural Science Foundation of the Nanjing Joint Center of Atmospheric Research (Grant No.NJCAR2016MS02)
文摘In this study, a three-dimensional mesoscale model was used to numerically simulate the well-known "98.7" heavy rainfall event that affected the Yangtze Valley in July 1998. Two experiments were conducted to analyze the impact of moist processes on the development of meso-β scale vortices(MβV) and their triggering by mesoscale wind perturbation(MWP). In the experiment in which the latent heat feedback(LHF) scheme was switched off, a stable low-level col field(i.e., saddle field—a region between two lows and two highs in the isobaric surface) formed, and the MWP triggered a weak MβV. However, when the LHF scheme was switched on as the MWP was introduced into the model, the MβV developed quickly and intense rainfall and a mesoscale low-level jet(mLLJ) were generated. The thickness of the air column and average temperature between 400 and 700 hPa decreased without the feedback of latent heat, whereas they increased quickly when the LHF scheme was switched on, with the air pressure falling at low levels but rising at upper levels. A schematic representation of the positive feedbacks among the mesoscale vortex, rainfall, and mLLJ shows that in the initial stage of the MβV, the MWP triggers light rainfall and the latent heat occurs at low levels, which leads to weak convergence and ageostrophic winds. In the mature stage of the MβV, convection extends to the middle-to-upper levels, resulting in an increase in the average temperature and a stretching of the air column. A low-level cyclonic circulation forms under the effect of Coriolis torque, and the m LLJ forms to the southeast of the MβV.
基金support extended by the National Basic Research Program of China(2013CB228301)is gratefully acknowledged
文摘Waste heat recovery from the flue gas of gasfired boilers was studied experimentally by measuring the flow and heat transfer of air and water through six kinds of packing with saturated humid air as the simulated flue gas.The experiments measured the effects of inlet air temperature, inlet air velocity and circulating water flow rate on the flow and heat transfer. The results show that higher inlet air temperatures and lower inlet air velocities lower the flow resistance and increase the heat transfer coefficient. The stainless steel packing had better surface wettability and larger thermal conductivity than the plastic packing, which enhanced the heat transfer between the water and the saturated moist air. When both the flow resistance reduction and the heat transfer enhancement were considered, the experimental results gave an optimal packing-specific surface area. A packed heat exchanger tower was designed for waste heat recovery from the flue gas of gas-fired boilers based on the experimental results which had better flow and heat transfer characteristics with lower pump and fan power consumption, more stable system operation and less thermal fluctuations compared with a non-packed heat transfer system with atomized water.
文摘Tumor infiltrating lymphocytes (TILs) are used in evaluating the prognosis and determining treatment of different types of cancer with variable degrees of success. The usage of checkpoint inhibitor immunotherapy as a treatment variety for cancer and Adoptive cell therapy is associated with many complications, severe side effects and high expenses. Recently, in a limited number of metastatic GIT and breast cancers, the identification of T-cell specific against so-called tumor neo-antigens and Adoptive transfer of those lymphocytes resulted in some improvement. In 2020, Detection of a T cell receptor (TCR) in a T cell clone that recognized and killed most human cancer cell lines in vitro via the monomorphic MHC class I-related protein MR1, offers an opportunity for pan-cancer therapy Twenty three years earlier, Moist Heat was used successfully to activate a whole different and new immune response that was able to detect genetic mutation in the affected cancer cells and cured many cases of squamous and basal cell carcinomas. In this commentary review, we aimed to revise the literature for updates of TILs usage in cancer prognosis and treatment.