We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the no...We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson's ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The 'down-bowing' Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27-34 km and the thickness range of 5-7 km. For the upper crust, Poisson's ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson's ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the 'down-bowing' Moho is attributable to the multi-phase E-W tectonic processes.展开更多
Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study ...Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tec展开更多
With the results of interpretation of seismic sounding profiles acquired in the past 30 years in the continent of China and its adjacent countries and ocean regions, such as Russia, Ka-zakhstan, Japan, India, Pakistan...With the results of interpretation of seismic sounding profiles acquired in the past 30 years in the continent of China and its adjacent countries and ocean regions, such as Russia, Ka-zakhstan, Japan, India, Pakistan, Philippine ocean basin, Pacific and Indian Ocean, we compiled a 2D Moho distribution map for the continent and its adjacent areas of eastern Asia. From the fea-tures of depth distribution and undulation of Moho, it is suggested that the eastern Asian region can be divided into 18 gradient belts with different sizes, 18 crustal blocks, 20 sediment basins and depression zones. The depth of Moho varies smoothly in each block, while the boundary (separat-ing different blocks) delineates the abrupt variation of Moho depth. Then, some subjects,such as oregen and sediment basin, fault system and rift, plate boundary, ocean-continent coupling and tectonic framework, are discussed based on the distribution gradient belts and block partition fea-tures of Moho depth in the eastern Asia and its adjacent regions.展开更多
We present a digital crustal model in North China Craton(NCC). The construction of crustal model is based on digitization of original seismic sounding profiles, and new results of three-dimensional structure images of...We present a digital crustal model in North China Craton(NCC). The construction of crustal model is based on digitization of original seismic sounding profiles, and new results of three-dimensional structure images of receiver functions. The crustal model includes seismic velocity and thickness of crustal layers. The depths to Moho indicate a thinning crust ~30 km in the east areas and a general westward deepening to more than 40 km in the west. The P wave velocity varies from 2.0 to 5.6 km/s in the sedimentary cover,from 5.8 to 6.4 km/s in the upper crust, and from 6.5 to 7.0 km/s in the lower crust. By analyzing regional trends in crustal structure and links to tectonic evolution illustrated by typical profiles, we conclude that:(1) The delimited area by the shallowing Moho in the eastern NCC represents the spatial range of the craton destruction. The present structure of the eastern NCC crust retains the tectonic information about craton destruction by extension and magmatism;(2) The tectonic activities of the craton destruction have modified the crustal structure of the convergence boundaries at the northern and southern margin of the NCC;(3) The Ordos terrene may represent a relatively stable tectonic feature in the NCC, but with the tectonic remnant of the continental collision during the assembly of the NCC in the north-east area and the response to the lateral expansion of the Tibetan Plateau during the Cenozoic in the south-west.展开更多
基金The first author gratefully acknowledges the financial support of the Outstanding Youth Scientist Project of the National Natural Science Foundation of China (Grant No. 4985108), Tibet Project from Resources and Environment Bureau of the Chinese Ac
文摘We recognized 6 sets of reflecting P- and S-wave events from Moho and other interfaces within the crust, respectively, with the wide-angle seismic data acquired from 510 km-long Selincuo-Ya'anduo profile in the northern Tibet, fitted the observed events with forward modeling, and interpreted crustal structure of P- and S-wave velocities and Poisson's ratio under the profile. The results demonstrate that the crustal structure between Yarlungzangbo and Bangong-Nujiang sutures changes abruptly, and the crust is the thickest at the middle part of the profile with thickness of 80 km or more. The 'down-bowing' Moho is the striking feature for the crustal variation along the west-east direction. The Moho uplifts with steps, and the uplifting rate westward is greater than that eastward. The heterogeneity of P- and S-wave velocities exists both vertically and horizontally, and one lower velocity layer (LVL) exists with the depth range of 27-34 km and the thickness range of 5-7 km. For the upper crust, Poisson's ratio is the lowest at the middle part of the profile; for the lower crust, the Poisson's ratio at the east segment is lower than that at west segment, which means that the crustal rigidity for the upper crust is different from the lower crust, and the lower crust under the east segment of the profile is more ductile. We infer that the substance in the lower crust endured eastward flow along with the collision between Eurasian and Indian plates, and the 'down-bowing' Moho is attributable to the multi-phase E-W tectonic processes.
基金supported by the National Basic Research Program of China(Grant No.2013CB733203)the National Natural Science Foundation of China(Grant Nos.41225016+1 种基金41125015)the National Science and Technology Major of China(Grant No.2011ZX05008-001)
文摘Moho depth and crustal average Poisson's ratio for 823 stations are obtained by H-n: stacking of receiver functions. These, to- gether with topography and receiver function amplitude information, were used to study the crustal structure beneath the North China Craton (NCC). The results suggest that modified and preserved crust coexist beneath the craton with generally Airy-type isostatic equilibrium. The equilibrium is relatively low in the eastern NCC and some local areas in the central and western NCC, which correlates well with regional geology and tectonic features. Major differences in the crust were observed beneath the eastern, central, and western NCC, with average Moho depths of 33, 37, and 42 km and average Poisson's ratios of 0.268, 0.267 and 0.264, respectively. Abnormal Moho depths and Poisson's ratios are mainly present in the rift zones, the northern and southern edges of the central NCC, and tectonic boundaries. The crust beneath Ordos retains the characteristics of typical craton. Poisson's ratio increases roughly linearly as Moho depth decreases in all three parts of the NCC with different slopes. Receiver function amplitudes are relatively large in the northern edge of the eastern and central NCC, and small in and near the rifts. The Yanshan Mountains and southern part of the Shanxi rift show small-scale variations in the receiver-function ampli- tudes. These observations suggest that overall modification and thinning in the crust occurred in the eastern NCC, and local crustal modification occurred in the central and westem NCC. Different crustal structures in the eastern, central, and western NCC suggest different modification processes and mechanisms. The overall destruction of the crustal structure in the eastern NCC is probably due to the westward subduction of the Pacific Plate during the Meso-Cenozoic time; the local modifications of the crust in the central and western NCC may be due to repeated reactivations at zones with a heterogeneous structure by successive thermal-tec
基金supported by the National Natural Science Foundation of China (Grant No. 40074020) and the National Basic Science Research Project (Grant No. 95-S-05).
文摘With the results of interpretation of seismic sounding profiles acquired in the past 30 years in the continent of China and its adjacent countries and ocean regions, such as Russia, Ka-zakhstan, Japan, India, Pakistan, Philippine ocean basin, Pacific and Indian Ocean, we compiled a 2D Moho distribution map for the continent and its adjacent areas of eastern Asia. From the fea-tures of depth distribution and undulation of Moho, it is suggested that the eastern Asian region can be divided into 18 gradient belts with different sizes, 18 crustal blocks, 20 sediment basins and depression zones. The depth of Moho varies smoothly in each block, while the boundary (separat-ing different blocks) delineates the abrupt variation of Moho depth. Then, some subjects,such as oregen and sediment basin, fault system and rift, plate boundary, ocean-continent coupling and tectonic framework, are discussed based on the distribution gradient belts and block partition fea-tures of Moho depth in the eastern Asia and its adjacent regions.
基金supported by the National Nature Science Foundation of China (Grant Numbers 91414301,91014006)
文摘We present a digital crustal model in North China Craton(NCC). The construction of crustal model is based on digitization of original seismic sounding profiles, and new results of three-dimensional structure images of receiver functions. The crustal model includes seismic velocity and thickness of crustal layers. The depths to Moho indicate a thinning crust ~30 km in the east areas and a general westward deepening to more than 40 km in the west. The P wave velocity varies from 2.0 to 5.6 km/s in the sedimentary cover,from 5.8 to 6.4 km/s in the upper crust, and from 6.5 to 7.0 km/s in the lower crust. By analyzing regional trends in crustal structure and links to tectonic evolution illustrated by typical profiles, we conclude that:(1) The delimited area by the shallowing Moho in the eastern NCC represents the spatial range of the craton destruction. The present structure of the eastern NCC crust retains the tectonic information about craton destruction by extension and magmatism;(2) The tectonic activities of the craton destruction have modified the crustal structure of the convergence boundaries at the northern and southern margin of the NCC;(3) The Ordos terrene may represent a relatively stable tectonic feature in the NCC, but with the tectonic remnant of the continental collision during the assembly of the NCC in the north-east area and the response to the lateral expansion of the Tibetan Plateau during the Cenozoic in the south-west.