This work investigates the effects of temperature and radiation intensity on the parameters of a copper indium diselenide (CIS) photovoltaic module. The module performance parameters are determined from calculated mod...This work investigates the effects of temperature and radiation intensity on the parameters of a copper indium diselenide (CIS) photovoltaic module. The module performance parameters are determined from calculated module parameters. An outdoor experimental setup is installed to carryout a series of I-V curve measurements under different irradiance and temperature conditions for the module. A numerical model which considers the effect of series and shunt resistances is developed to evaluate the different parameters of PV modules. Orthogonal distance regression (ODR) algorithm is adapted for fitting I-V measurements and extracting module parameters from I-V measurements. The values of module parameters, series resistance Rs, shunt resistance Rsh, diode ideality factor n and reverse saturation current Io determined from I-V measurements at different irradiation intensity and temperature range are in good agreement with the corresponding parameters obtained from the developed numerical model. The module parameters extracted from I-V measurements are employed to calculate the module performance parameters, i.e. open circuit voltage Voc, fill factor FF and module efficiency η at different irradiation intensity and temperature range. Present results indicate that the largest drop in open circuit voltage Voc due to about 20℃ increase in temperature is approximately 8.8% which is not compensated for by the relatively small increase in short circuit current, (2.9% in Isc), resulting in a reduction in maximum power of about 6.3%. Results let us conclude that the shunt resistance RSh increases with radiation at low radiation values (2). As radiation increases at high radiation values (> 400 W/m2), RSh begins to decease sharply and dramatically. Also, as the light intensity incident on the solar module increases, the series resistance and the output voltage decrease. When the irradiance intensity increases, the series resistance decreases but with a very low rate at the two studied temperatures ranges. The low rate decreas展开更多
Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
文摘This work investigates the effects of temperature and radiation intensity on the parameters of a copper indium diselenide (CIS) photovoltaic module. The module performance parameters are determined from calculated module parameters. An outdoor experimental setup is installed to carryout a series of I-V curve measurements under different irradiance and temperature conditions for the module. A numerical model which considers the effect of series and shunt resistances is developed to evaluate the different parameters of PV modules. Orthogonal distance regression (ODR) algorithm is adapted for fitting I-V measurements and extracting module parameters from I-V measurements. The values of module parameters, series resistance Rs, shunt resistance Rsh, diode ideality factor n and reverse saturation current Io determined from I-V measurements at different irradiation intensity and temperature range are in good agreement with the corresponding parameters obtained from the developed numerical model. The module parameters extracted from I-V measurements are employed to calculate the module performance parameters, i.e. open circuit voltage Voc, fill factor FF and module efficiency η at different irradiation intensity and temperature range. Present results indicate that the largest drop in open circuit voltage Voc due to about 20℃ increase in temperature is approximately 8.8% which is not compensated for by the relatively small increase in short circuit current, (2.9% in Isc), resulting in a reduction in maximum power of about 6.3%. Results let us conclude that the shunt resistance RSh increases with radiation at low radiation values (2). As radiation increases at high radiation values (> 400 W/m2), RSh begins to decease sharply and dramatically. Also, as the light intensity incident on the solar module increases, the series resistance and the output voltage decrease. When the irradiance intensity increases, the series resistance decreases but with a very low rate at the two studied temperatures ranges. The low rate decreas
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.