In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-lin...In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.展开更多
基金This work was supported by National Natural Science Foundation of China (No .60474038)
文摘In this paper, an optimal higher order learning adaptive control approach is developed for a class of SISO nonlinear systems. This design is model-free and depends directly on pseudo-partial-derivatives derived on-line from the input and output information of the system. A novel weighted one-step-ahead control criterion function is proposed for the control law. The convergence analysis shows that the proposed control law can guarantee the convergence under the assumption that the desired output is a set point. Simulation examples are provided for nonlinear systems to illustrate the better performance of the higher order learning adaptive control.