期刊文献+
共找到175篇文章
< 1 2 9 >
每页显示 20 50 100
基于改进SSD的果园行人实时检测方法 被引量:32
1
作者 刘慧 张礼帅 +2 位作者 沈跃 张健 吴边 《农业机械学报》 EI CAS CSCD 北大核心 2019年第4期29-35,101,共8页
农田障碍物的精确识别是无人农业车辆必不可少的关键技术之一。针对果园环境复杂难以准确检测出障碍物信息的问题,提出了一种改进单次多重检测器(Single shot multibox detector,SSD)深度学习目标检测方法,对田间障碍物中的行人进行识... 农田障碍物的精确识别是无人农业车辆必不可少的关键技术之一。针对果园环境复杂难以准确检测出障碍物信息的问题,提出了一种改进单次多重检测器(Single shot multibox detector,SSD)深度学习目标检测方法,对田间障碍物中的行人进行识别。使用轻量化网络MobileNetV2作为SSD模型中的基础网络,以减少提取图像特征过程中所花费的时间及运算量,辅助网络层以反向残差结构结合空洞卷积作为基础结构进行位置预测,在综合多尺度特征的同时避免下采样操作带来的信息损失,基于Tensorflow深度学习框架,在卡耐基梅隆大学国家机器人工程中心的果园行人检测开放数据集上进行不同运动状态(运动、静止)、不同姿态(正常、非正常)和不同目标面积(大、中、小)的田间行人识别精度和识别速度的对比试验。试验表明,当IOU阀值为0. 4时,改进的SSD模型田间行人检测模型的平均准确率和召回率分别达到了97. 46%和91. 65%,高于改进前SSD模型的96. 87%和88. 51%,并且参数量减少至原来的1/7,检测速度提高了187. 5%,检测速度为62. 50帧/s,模型具有较好的鲁棒性,可以较好地实现田间环境下行人的检测,为无人农机的避障决策提供依据。 展开更多
关键词 无人农业车辆 行人检测 单次多重检测器 空洞卷积 mobilenetv2
下载PDF
基于轻量级卷积神经网络和迁移学习的小麦叶部病害图像识别 被引量:30
2
作者 冯晓 李丹丹 +7 位作者 王文君 郑国清 刘海礁 孙永胜 梁山 杨莹 臧贺藏 张辉 《河南农业科学》 北大核心 2021年第4期174-180,共7页
为实现基于移动端的小麦叶部病害图像便捷识别,基于轻量级卷积神经网络(Convolutional neural network,CNN)和迁移学习建立小麦叶部病害图像识别模型。首先,建立由小麦白粉病、条锈病和叶锈病3种小麦叶部病害图像组成的样本集,每幅图像... 为实现基于移动端的小麦叶部病害图像便捷识别,基于轻量级卷积神经网络(Convolutional neural network,CNN)和迁移学习建立小麦叶部病害图像识别模型。首先,建立由小麦白粉病、条锈病和叶锈病3种小麦叶部病害图像组成的样本集,每幅图像大小为224像素×224像素;然后,采用深度学习框架Tensorflow 2.0,基于MobileNetV2构建小麦叶部病害图像识别模型,使用ImageNet数据集上训练好的参数作为模型初始参数;最后,分析迁移学习方法、样本量、全局平均池化(Global average pooling,GAP)前添加Dropout层、初始学习率大小对模型性能的影响。结果表明,采用将模型所有层设置为可训练的迁移学习方式、选择适合的数据增强方法增加样本量、在GAP前添加Dropout层、设置0.00001的初始学习率,对3种小麦病害图像的平均识别准确率高达99.96%。可见,基于MobileNetV2和迁移学习可构建识别准确率高、泛化能力强、适合移动端应用的小麦叶部病害图像识别模型。 展开更多
关键词 小麦 叶部病害 卷积神经网络 迁移学习 图像识别 mobilenetv2 计算机视觉
下载PDF
基于MobileNetV2和迁移学习的玉米病害识别研究 被引量:15
3
作者 刘合兵 鲁笛 席磊 《河南农业大学学报》 CAS CSCD 2022年第6期1041-1051,共11页
【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2... 【目的】解决玉米叶部病害识别效率低、精度低的问题,探究新的玉米病害识别方法。【方法】将卷积神经网络MobileNetV2和迁移学习相结合,分别采用迁移学习中特征提取、全部迁移和微调3种训练方式获得3种模型,并与全新训练的MobileNetV2模型进行对比。【结果】微调模型经历较少的epoch便可取得较好的识别效果,模型准确率达99.25%,比全新训练的MobileNetV2模型提高了3.09%。在上述研究基础上,设计并实现了基于移动端的玉米病害识别系统,玉米叶部病害的平均识别准确率为84%,用时仅为1.16 s。【结论】本研究提出的玉米病害识别方法能更好应用于日常检测玉米病害,为相关病害防治提供参考。 展开更多
关键词 玉米病害 卷积神经网络 迁移学习 mobilenetv2 识别系统
下载PDF
基于小波时频图与轻量级卷积神经网络的螺栓连接损伤识别 被引量:16
4
作者 卓德兵 曹晖 《工程力学》 EI CSCD 北大核心 2021年第9期228-238,共11页
针对目前大型结构螺栓连接状态监测的困难,该文采用声音信号,提出了结合小波时频图与轻量级卷积神经网络MobileNetv2优势的螺栓松动识别方法。该方法通过对采集到的声音信号进行预处理和连续小波变换得到小波时频图,以小波时频图作为样... 针对目前大型结构螺栓连接状态监测的困难,该文采用声音信号,提出了结合小波时频图与轻量级卷积神经网络MobileNetv2优势的螺栓松动识别方法。该方法通过对采集到的声音信号进行预处理和连续小波变换得到小波时频图,以小波时频图作为样本对轻量级卷积神经网络MobileNetv2进行训练,从而实现螺栓松动声音信号的识别。对一钢桁架模型的室外试验研究表明:该方法能实现对各种环境噪声信号,不同位置、数目和松动程度的螺栓松动声音信号的精准识别;该方法不仅识别准确率高、稳定性好,而且对计算和存储的要求低,便于应用于移动设备和嵌入式设备,为环境激励下大型复杂结构的损伤在线识别提供了新的思路。 展开更多
关键词 螺栓连接 损伤识别 声音信号 小波时频图 mobilenetv2
下载PDF
基于轻量化SSD的车辆及行人检测网络 被引量:15
5
作者 郑冬 李向群 许新征 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2019年第1期73-81,共9页
近年来,基于深度学习的目标检测算法发展迅速.但是由于深度网络规模过大,导致其还不能在嵌入式平台上进行广泛应用.本文针对SSD(Single Shot Multi-box Detector)模型的规模进行优化,引入了轻量化卷积神经网络MobileNetv2,对比了SSD和... 近年来,基于深度学习的目标检测算法发展迅速.但是由于深度网络规模过大,导致其还不能在嵌入式平台上进行广泛应用.本文针对SSD(Single Shot Multi-box Detector)模型的规模进行优化,引入了轻量化卷积神经网络MobileNetv2,对比了SSD和其轻量化版本SSDLite的网络结构,在此基础上提出了基于轻量化SSD的车辆及行人检测模型LVP-DN(Lightweight Vehicle and Pedestrian Detection Network).首先,通过MobilNetv2替代VGG作为基础网络进行特征提取.然后,用轻量化的SSD版本SSDLite替代SSD,从而达到减少模型大小、加快检测速度的目的.进一步通过优化默认候选框的比例,提高了网络对行人的检测精度.最后,在KITTI和PASCAL VOC数据集上分别对比了不同基础网络、输入图像尺寸及是否使用预训练模型这3个因素对网络性能的影响.实验结果表明,相比其他流行的目标检测模型,本文所提出的车辆及行人检测模型在精度、速度和模型大小等评价标准上取得了较好的效果. 展开更多
关键词 目标检测 卷积神经网络 轻量化神经网络 SSD mobilenetv2
下载PDF
基于MobileNetV2的圆形指针式仪表识别系统 被引量:14
6
作者 李慧慧 闫坤 +2 位作者 张李轩 刘威 李执 《计算机应用》 CSCD 北大核心 2021年第4期1214-1220,共7页
针对目前指针式仪表识别任务在使用深度学习算法时存在模型参数量大、计算量大、准确率较低的问题,提出一种基于改进预训练MobileNetV2网络模型与圆形Hough变换相结合的圆形指针式仪表智能检测和识别系统。首先,采用Hough变换解决复杂... 针对目前指针式仪表识别任务在使用深度学习算法时存在模型参数量大、计算量大、准确率较低的问题,提出一种基于改进预训练MobileNetV2网络模型与圆形Hough变换相结合的圆形指针式仪表智能检测和识别系统。首先,采用Hough变换解决复杂场景内非圆形区域的干扰问题;然后,提取圆形区域以构建数据集;最后,使用基于改进预训练MobileNetV2网络模型对圆形指针式仪表进行识别。为客观反映所提模型的性能优劣,采用平均混淆矩阵来衡量模型性能。实验结果表明,该系统在圆形指针式仪表识别任务中的识别率达到99.76%。同时,将所提模型与其他5种不同的网络模型进行对比的结果表明,该模型与ResNet50的准确率最高,但在模型参数量和模型计算量方面,所提网络模型相较于ResNet50分别降低了90.51%和92.40%,可见该模型有助于进一步在移动端或嵌入式设备中部署和实现工业级的实时圆形指针式仪表检测和识别。 展开更多
关键词 圆形指针式仪表 圆形Hough变换 预训练模型 mobilenetv2 平均混淆矩阵
下载PDF
基于轻量化YOLOv3的遥感军事目标检测算法 被引量:14
7
作者 秦伟伟 宋泰年 +2 位作者 刘洁瑜 王洪伟 梁卓 《计算机工程与应用》 CSCD 北大核心 2021年第21期263-269,共7页
在导弹智能突防的过程中,从海量的遥感图像数据中检测敌方反导阵地具有极大的应用价值。由于弹载部署环境算力有限,设计了一种兼顾轻量化,检测精确率以及检测速度的遥感目标检测算法。制作了典型遥感军事目标数据集,通过K-means算法对... 在导弹智能突防的过程中,从海量的遥感图像数据中检测敌方反导阵地具有极大的应用价值。由于弹载部署环境算力有限,设计了一种兼顾轻量化,检测精确率以及检测速度的遥感目标检测算法。制作了典型遥感军事目标数据集,通过K-means算法对数据集聚类分析。利用MobileNetV2网络代替YOLOv3算法的主干网络,保证网络的轻量化和检测速度。提出了适用于遥感目标特性的轻量化高效通道协同注意力模块和目标旋转不变性检测模块,将其嵌入检测算法中,在网络轻量化的基础上提升检测精确率。实验结果表明,提出算法的精确率达到97.8%,提升了6.8个百分点,召回率达到95.7%,提升了3.9个百分点,平均检测精度达到95.2%,提升了4.4个百分点,检测速度达到了每秒34.19张图,而网络大小仅为17.5 MB。结果表明该算法能满足导弹智能突防的综合要求。 展开更多
关键词 目标检测 轻量化网络 YOLOv3 遥感图像 mobilenetv2
下载PDF
基于改进的YOLOv4绝缘子掉片故障检测方法 被引量:12
8
作者 党宏社 薛萌 郭琴 《电瓷避雷器》 CAS 北大核心 2022年第1期211-218,共8页
针对现有输电线路无人机巡检使用的目标检测算法速度较慢且模型文件较大的问题,提出了一种改进的YOLOv4目标检测算法。使用轻量型的MobileNetv2网络作为模型的主干特征提取网络,并将模型后续的标准卷积运算变为深度可分离卷积,减少了运... 针对现有输电线路无人机巡检使用的目标检测算法速度较慢且模型文件较大的问题,提出了一种改进的YOLOv4目标检测算法。使用轻量型的MobileNetv2网络作为模型的主干特征提取网络,并将模型后续的标准卷积运算变为深度可分离卷积,减少了运算参数。使用K-means聚类得到了9种绝缘子及掉片故障锚框尺寸的先验知识。使用h-swish函数作为模型颈部网络的激活函数,减少了特征反复提取过程的信息损失。通过与主流算法进行实验对比,改进后的算法检测速度可达到10.51 FPS,相较SSD算法快了18.7%,模型文件大小为46.4 MB,仅为原算法的1/5,检测的平均精度mAP达到94.08%,在满足精度的情况下提升了检测速度,减少了模型体积,为实现无人机巡检的边采集边检测提供了可能。 展开更多
关键词 绝缘子故障 目标检测 YOLOv4 mobilenetv2 深度学习
原文传递
基于MobileNetV2与树莓派的人脸识别系统 被引量:13
9
作者 赵洋 许军 《计算机系统应用》 2021年第8期67-72,共6页
人脸识别技术在安防,商业,金融等领域都有广泛的应用.针对目前人脸识别系统成本高,易用性低等现象,提出了基于树莓派(Raspberry Pi)实现人脸识别的方案.首先利用OpenCV计算机视觉库中的Harr级联方法,对图像中的人脸进行定位;然后利用改... 人脸识别技术在安防,商业,金融等领域都有广泛的应用.针对目前人脸识别系统成本高,易用性低等现象,提出了基于树莓派(Raspberry Pi)实现人脸识别的方案.首先利用OpenCV计算机视觉库中的Harr级联方法,对图像中的人脸进行定位;然后利用改进的MobileNetV2网络模型对人脸进行特征提取和分类,得到一个优化的人脸识别模型;最后将模型移植到Raspberry Pi进行人脸识别.该模型对图库中的人识别准确率为95%,对陌生人识别准确率为80%.实验结果表明该系统进行人脸识别工作稳定,识别速度快,应用场景广. 展开更多
关键词 图像处理 树莓派 mobilenetv2 人脸检测 人脸识别
下载PDF
基于深度学习和籽粒双面特征的玉米品种识别 被引量:12
10
作者 冯晓 张辉 +5 位作者 周蕊 乔璐 魏东 李丹丹 张玉尧 郑国清 《系统仿真学报》 CAS CSCD 北大核心 2021年第12期2983-2991,共9页
为构建高识别准确率且适用于手机端应用的玉米籽粒品种识别模型,提出利用手机获取玉米粒籽双面(胚面和非胚面)图像,基于轻量级卷积神经网络MobileNetV2和迁移学习构建玉米籽粒图像品种识别模型,针对已有研究中多以玉米籽粒单面识别为主... 为构建高识别准确率且适用于手机端应用的玉米籽粒品种识别模型,提出利用手机获取玉米粒籽双面(胚面和非胚面)图像,基于轻量级卷积神经网络MobileNetV2和迁移学习构建玉米籽粒图像品种识别模型,针对已有研究中多以玉米籽粒单面识别为主,分析对比玉米籽粒单、双面特征建模及识别性能。结果表明,玉米籽粒双面特征建模的双面识别准确率达99.83%,优于单面特征建模识别以及胚面和非胚面图像分别建模后双面识别,适用于手机端玉米籽粒品种识别应用需求。 展开更多
关键词 玉米 深度学习 品种识别 mobilenetv2 机器视觉
下载PDF
改进MobileNetV2算法的番茄叶片病害种类识别 被引量:7
11
作者 黄乾峰 董琴 韦静 《计算机系统应用》 2023年第1期385-391,共7页
番茄叶片病害种类具有差异较小、肉眼难以辨别的特点.针对经典卷积神经网络参数多、计算量巨大、模型识别率较低以及预测误差较大等问题,提出一种改进MobileNetV2网络的病害识别方法.在适当的网络层加入通道和空间注意力机制增强网络对... 番茄叶片病害种类具有差异较小、肉眼难以辨别的特点.针对经典卷积神经网络参数多、计算量巨大、模型识别率较低以及预测误差较大等问题,提出一种改进MobileNetV2网络的病害识别方法.在适当的网络层加入通道和空间注意力机制增强网络对于病叶片特征的细化能力以及减少无关特征的干扰,使用Ghost模块替换原模型中部分倒残差块,保证模型精度的同时减少参数量.利用LeakyReLU激活函数保留特征图中更多的正负特征信息,增强模型的鲁棒性.在公共数据集PlantVillage选取早疫病,晚疫病,班枯病,细菌性溃疡病,红斑叶螨病,叶霉病,细菌性斑点病等10种番茄病叶片作为数据集进行实验.实验结果表明,改进MobileNetV2网络分类准确率达到98.57%,相较于原MobileNetV2,准确率提高了2.29%,模型大小减小了22.52%,优化效果较为显著. 展开更多
关键词 mobilenetv2 注意力机制 Ghost模块 病害识别 图像分类 深度学习
下载PDF
一种轻量级的DeepLabv3+遥感影像建筑物提取方法 被引量:10
12
作者 王华俊 葛小三 《自然资源遥感》 CSCD 北大核心 2022年第2期128-135,共8页
快速从遥感影像中提取出具有较高精度的建筑物是遥感智能化应用服务的重要研究内容之一。针对DeepLab模型对遥感影像建筑物边缘分割不精确、分割大尺度目标存在孔洞现象、网络参数量大等问题,提出一种轻量级DeepLabv3+模型的遥感影像建... 快速从遥感影像中提取出具有较高精度的建筑物是遥感智能化应用服务的重要研究内容之一。针对DeepLab模型对遥感影像建筑物边缘分割不精确、分割大尺度目标存在孔洞现象、网络参数量大等问题,提出一种轻量级DeepLabv3+模型的遥感影像建筑物提取方法。该方法使用轻量级网络MobileNetv2替换DeepLabv3+的主干网络Xception,从而减少参数量、提高训练速度;对空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的空洞率进行优化组合,提高多尺度语义特征提取效果。改进的模型在WHU和Massachusetts数据集上进行验证实验,结果表明,在WHU数据集中得到的交并比和F1分数分别为82.37%和92.89%,比DeepLabv3+分别提高2.71百分点和2.14百分点,在Massachusetts数据集中的交并比和F1分数比DeepLabv3+分别提高2.04百分点和2.32百分点,训练参数量和训练时间减少,建筑物提取精度得到有效提高,能够满足快速提取高精度建筑物的要求。 展开更多
关键词 深度学习 语义分割 改进ASPP DeepLabv3+ mobilenetv2
下载PDF
基于MobileNetV2和IFPN改进的SSD垃圾实时分类检测方法 被引量:10
13
作者 赵珊 刘子路 +1 位作者 郑爱玲 高雨 《计算机应用》 CSCD 北大核心 2022年第S01期106-111,共6页
针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积... 针对垃圾分类检测任务中检测目标尺寸不一和小目标检测精度不高等问题,构建一种基于隐式特征金字塔网络(IFPN)和MobileNetV2的改进SSD模型的分类检测方法,对垃圾进行实时分类检测。首先,将改进后的MobileNetV2引入SSD,加入带有空洞卷积的空间金字塔池化模块(ASPP),在降低网络模型计算复杂度的同时保证网络实时性和精确性;其次,采用IFPN从网络的深层到浅层逐级融合SSD,更精确地检测出小目标;最后,使用Focal Loss函数调节正负样本之间的权重。实验结果表明,在阈值为0.4时,所提方法比传统SSD平均精确率均值(mAP)提高了4.84个百分点,检测耗时减少了72.7%,能满足边缘计算设备对模型的各项要求。 展开更多
关键词 垃圾分类 目标检测 mobilenetv2 SSD 空间金字塔池化 隐式特征金字塔网络
下载PDF
基于改进MobileNetV2的人脸表情识别 被引量:6
14
作者 严春满 张翔 王青朋 《计算机工程与科学》 CSCD 北大核心 2023年第6期1071-1078,共8页
针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与... 针对现有深度卷积神经网络参数量庞大,导致人脸表情识别场景受限的问题,提出一种基于改进轻量级卷积神经网络的人脸表情识别模型。该模型以MobileNetV2轻量级特征提取网络为主要框架,通过压缩网络宽度因子与整体维度,减少网络参数量与计算量;引入SandGlass模块对网络倒残差模块进行改进,减少特征信息在网络传输中的丢失;同时嵌入高效通道注意力机制,提高网络对于特征信息的提取能力。在人脸表情数据集FER2013和CK+上进行实验,所提网络模型的人脸表情识别准确率达到了68.96%与95.96%,分别高于MobileNetV21.06%与6.14%,且参数量下降82.28%,实验结果验证了网络模型改进措施的有效性。 展开更多
关键词 人脸表情识别 轻量级网络 mobilenetv2 倒残差模块 通道注意力
下载PDF
基于改进YOLOv3的实时交通标志检测算法 被引量:9
15
作者 张达为 刘绪崇 +2 位作者 周维 陈柱辉 余瑶 《计算机应用》 CSCD 北大核心 2022年第7期2219-2226,共8页
针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干... 针对目前我国智能驾驶辅助系统识别道路交通标志检测速度慢、识别精度低等问题,提出一种基于YOLOv3的改进的道路交通标志检测算法。首先,将MobileNetv2作为基础特征提取网络引入YOLOv3以形成目标检测网络模块MN-YOLOv3,在MN-YOLOv3主干网络中引入两条Down-up连接进行特征融合,从而减少检测算法的模型参数,提高了检测模块的运行速度,增强了多尺度特征图之间的信息融合;然后,根据交通标志目标形状的特点,使用K-Means++算法产生先验框的初始聚类中心,并在边界框回归中引入距离交并比(DIOU)损失函数来将DIOU与非极大值抑制(NMS)结合;最后,将感兴趣区域(ROI)与上下文信息通过ROIAlign统一尺寸后融合,从而增强目标特征表达。实验结果表明,所提算法性能更好,在长沙理工大学中国交通标志检测(CCTSDB)数据集上的平均准确率均值(mAP)可达96.20%。相较于FasterR-CNN、YOLOv3、CascadedR-CNN检测算法,所提算法拥有具有更好的实时性和更高的检测精度,对各种环境变化具有更好的鲁棒性。 展开更多
关键词 目标检测 特征融合 YOLOv3 距离交并比 mobilenetv2 K-Means++
下载PDF
基于改进MobileNetV2的柑橘害虫分类识别方法 被引量:5
16
作者 张鹏程 余勇华 +2 位作者 陈传武 郑文燕 李善军 《华中农业大学学报》 CAS CSCD 北大核心 2023年第3期161-168,共8页
为提高柑橘害虫识别精准度和防治效果,本研究构建包含10类对柑橘危害程度较重的害虫图像数据集,基于神经网络MobileNetV2与注意力机制ECA开发轻量化且高识别精度的ECA_MobileNetV2模型,并基于该模型开发一款边缘计算App。将ECA注意力机... 为提高柑橘害虫识别精准度和防治效果,本研究构建包含10类对柑橘危害程度较重的害虫图像数据集,基于神经网络MobileNetV2与注意力机制ECA开发轻量化且高识别精度的ECA_MobileNetV2模型,并基于该模型开发一款边缘计算App。将ECA注意力机制嵌入MobileNetV2网络的反残差结构尾部,以增强原网络的跨通道信息交互能力,提升原网络的特征提取能力。测试结果显示,ECA_MobileNetV2模型对柑橘害虫的分类准确率达到93.63%,相比于MobileNetV2、GoogLeNet和ResNet18模型分别提高了1.68、1.44和2.40个百分点,而模型参数量、浮点运算数和模型大小分别为3.50×10^(6)、328.06×10^(6)和8.72 MB,复杂度仅略高于MobileNetV2,可以在手机上以边缘计算的形式运行。研究结果表明,本研究开发的智能识别工具能够对不同种类的柑橘害虫进行快速、有效的分类识别。 展开更多
关键词 柑橘 柑橘害虫 深度学习 注意力机制 mobilenetv2 柑橘害虫监测
下载PDF
基于改进YOLOv4的行人检测算法 被引量:9
17
作者 李挺 伊力哈木·亚尔买买提 《科学技术与工程》 北大核心 2022年第8期3221-3227,共7页
针对YOLOv4算法在行人检测中精度低,实时性差的问题,提出一种基于YOLOv4的改进算法。首先将MobileNetv2作为主干网络,在减少参数量的同时保证其特征提取能力,同时在MobileNetv2中加入Bottom-up连接,减少浅层信息的丢失;然后在特征融合... 针对YOLOv4算法在行人检测中精度低,实时性差的问题,提出一种基于YOLOv4的改进算法。首先将MobileNetv2作为主干网络,在减少参数量的同时保证其特征提取能力,同时在MobileNetv2中加入Bottom-up连接,减少浅层信息的丢失;然后在特征融合网络嵌入卷积模块的注意力机制模块(convolutional block attention module,CBAM)注意力机制,增强特征的表现力;最后在分类与回归网络中加入Inception结构,进一步提高检测速度和增加网络复杂度。结果表明:在VOC数据集上,改进算法比原算法检测效果更佳,实时性更好,其精度提高了2.87%,处理速度提升了29.52 FPS;同时在真实场景下构建的数据集上,改进后的算法比YOLOv4精度提高了2.13%,具有较好的鲁棒性。 展开更多
关键词 行人检测 实时 多尺度融合 卷积模块的注意力机制模块(CBAM) BOTTOM-UP MobilenNetv2
下载PDF
A Lightweight CNN Based on Transfer Learning for COVID-19 Diagnosis 被引量:9
18
作者 Xiaorui Zhang Jie Zhou +1 位作者 Wei Sun Sunil Kumar Jha 《Computers, Materials & Continua》 SCIE EI 2022年第7期1123-1137,共15页
The key to preventing the COVID-19 is to diagnose patients quickly and accurately.Studies have shown that using Convolutional Neural Networks(CNN)to analyze chest Computed Tomography(CT)images is helpful for timely CO... The key to preventing the COVID-19 is to diagnose patients quickly and accurately.Studies have shown that using Convolutional Neural Networks(CNN)to analyze chest Computed Tomography(CT)images is helpful for timely COVID-19 diagnosis.However,personal privacy issues,public chest CT data sets are relatively few,which has limited CNN’s application to COVID-19 diagnosis.Also,many CNNs have complex structures and massive parameters.Even if equipped with the dedicated Graphics Processing Unit(GPU)for acceleration,it still takes a long time,which is not conductive to widespread application.To solve above problems,this paper proposes a lightweight CNN classification model based on transfer learning.Use the lightweight CNN MobileNetV2 as the backbone of the model to solve the shortage of hardware resources and computing power.In order to alleviate the problem of model overfitting caused by insufficient data set,transfer learning is used to train the model.The study first exploits the weight parameters trained on the ImageNet database to initialize the MobileNetV2 network,and then retrain the model based on the CT image data set provided by Kaggle.Experimental results on a computer equipped only with the Central Processing Unit(CPU)show that it consumes only 1.06 s on average to diagnose a chest CT image.Compared to other lightweight models,the proposed model has a higher classification accuracy and reliability while having a lightweight architecture and few parameters,which can be easily applied to computers without GPU acceleration.Code:github.com/ZhouJie-520/paper-codes. 展开更多
关键词 Convolutional neural networks chest computed tomography image COVID-19 transfer learning mobilenetv2
下载PDF
基于迁移学习的轻量化YOLOv2口罩佩戴检测方法 被引量:7
19
作者 张烈平 李智浩 唐玉良 《电子测量技术》 北大核心 2022年第10期112-117,共6页
针对当前佩戴口罩数据集样本数量较少、硬件条件受限的情况下,本文提出了一种基于迁移学习的轻量化YOLOv2口罩佩戴检测方法。该方法以YOLOv2目标检测方法为基础,利用参数迁移学习的MobileNetV2作为特征提取网络,简化了网络模型并提高了... 针对当前佩戴口罩数据集样本数量较少、硬件条件受限的情况下,本文提出了一种基于迁移学习的轻量化YOLOv2口罩佩戴检测方法。该方法以YOLOv2目标检测方法为基础,利用参数迁移学习的MobileNetV2作为特征提取网络,简化了网络模型并提高了训练速度。预训练的MobileNetV2特征提取网络与YOLOv2目标检测网络结合构成口罩佩戴检测网络模型。收集并建立了1000张人脸佩戴口罩图片数据集对网络模型进行训练和测试。实验结果表明,与YOLOv2、SSD300模型相比,MobileNetV2-YOLOv2模型口罩佩戴检测平均准确率提高3.8%、2.7%,检测速度提升2.5和2.4倍。并且在光线不足和密集检测条件下,MobileNetV2-YOLOv2依然可以有效进行口罩佩戴检测,相较于R-CNN和Faster-RCNN具有更好的检测效果,体现了更强的鲁棒性。 展开更多
关键词 计算机神经网络 口罩佩戴检测 迁移学习 YOLOv2 mobilenetv2
下载PDF
基于深度学习和特征融合的人脸活体检测算法 被引量:8
20
作者 邓雄 王洪春 《计算机应用》 CSCD 北大核心 2020年第4期1009-1015,共7页
针对目前基于深度学习的活体检测算法大都基于大型卷积神经网络的问题,提出一种基于轻量级网络MobileNetV2和特征融合的活体检测算法。首先,以改进的MobileNetV2为基础网络分别从RGB、HSV、LBP图中提取特征;然后,将得到的特征图堆叠在... 针对目前基于深度学习的活体检测算法大都基于大型卷积神经网络的问题,提出一种基于轻量级网络MobileNetV2和特征融合的活体检测算法。首先,以改进的MobileNetV2为基础网络分别从RGB、HSV、LBP图中提取特征;然后,将得到的特征图堆叠在一起以进行特征层的融合;最后,从融合后的特征图中继续提取特征,并利用Softmax层作出真假人脸的判断。仿真结果显示,所提算法在NUAA数据集上的等错误率(EER)为0.02%,在Siw数据集上的ACER(Average Classification Error Rate)为0.75%,而且测试单张图像仅用时6 ms。实验结果表明:融合不同的信息可以获得更低的错误率,改进的轻量化网络保证了算法的高效性并满足实时性需求。 展开更多
关键词 人脸活体检测 特征融合 mobilenetv2 轻量化网络
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部