期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于轻量级神经网络的小尾寒羊面部识别
1
作者 孙权 宣传忠 +4 位作者 张梦宇 张曦文 赵明辉 宋硕 郝敏 《山东农业大学学报(自然科学版)》 北大核心 2024年第2期254-261,共8页
为实现羊只面部身份快速识别,本文以自建数据集为研究对象,提出了一种基于SSD的轻量化检测算法。首先该算法将SSD的主干网络VGG16替换成轻量级神经网络MobileNetv2,构建了一种轻量化混合神经网络模型。其次在特征提取网络参数量为1122&#... 为实现羊只面部身份快速识别,本文以自建数据集为研究对象,提出了一种基于SSD的轻量化检测算法。首先该算法将SSD的主干网络VGG16替换成轻量级神经网络MobileNetv2,构建了一种轻量化混合神经网络模型。其次在特征提取网络参数量为1122×32的bottleneck层前端和72×160的bottleneck层后端分别引入CA、SE、CBAM和ECA注意力机制,实验结果表明72×160的bottleneck层后端引入ECA注意力机制是最优的。最后将smoothL1损失函数替换成BalancedL1损失函数。最优模型(SSD-v2-ECA2-B)模型大小从SSD的132MB减小到56.4MB,平均精度均值为81.16%,平均帧率为64.21帧/s,相较于基础的SSD模型平均精度均值提升了0.94个百分点,模型体积减小了75.6MB,检测速度提高了5.23帧/s。利用相同数据集在不同目标检测模型上进行对比试验,与SSD模型、Faster R-CNN模型、Retinanet模型相比,平均精度均值分别提升了0.36、2.40和0.07个百分点,与改进前的模型相比具有更好的综合性能。改进模型在大幅减少模型大小及其计算量的同时使模型性能保持在一个较高的水平,为畜牧养殖数字化和智能化提供方法参考,具有较高的应用价值。 展开更多
关键词 羊脸识别 SSD目标检测算法 mobilenetv2轻量级神经网络
下载PDF
基于MobileNetv2神经网络的无人机信号调制识别方法 被引量:1
2
作者 杨雷 郭恩泽 +3 位作者 刘益岑 魏国峰 杨宁 郭道省 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第3期210-218,共9页
针对无人机的图传信号,现有调制识别方法存在低信噪比条件下识别率低以及传统的深度网络模型存储开销大、计算复杂,难以应用于存储空间受限的6G智能边缘设备等问题,提出基于时频分析和MobileNetv2轻量级神经网络模型的无人机图传信号调... 针对无人机的图传信号,现有调制识别方法存在低信噪比条件下识别率低以及传统的深度网络模型存储开销大、计算复杂,难以应用于存储空间受限的6G智能边缘设备等问题,提出基于时频分析和MobileNetv2轻量级神经网络模型的无人机图传信号调制识别方法。通过短时傅里叶变换(short time fourier transform, STFT)把一维时域信号转为二维时频图像,并且利用能量门限降噪方法对获得的时频图像特征进行降噪和归一化处理,最后使用MobileNetv2轻量级神经网络对信号特征进行识别。实验选用了6种常见的单载波数字通信信号和1种多载波OFDM调制方式的信号,并在AWGN加性高斯白噪声信道环境中进行。实验结果表明,所提方法相较于未降噪的图像特征,在SNR=-12 dB时识别率提升了约6%,在SNR=-12~0 dB的高斯白噪声环境下,对7种不同调制方式的无人机图传信号获得了93.33%的识别率,并且完成一次识别需要进行大约313 M次的计算量,模型参数量大约为3.5 M,模型规模大约为13 M。相比于其他调制识别方法,所提方法不仅识别准确率较高、稳定性好,而且显著降低了网络模型存储和计算量的开销,便于应用于移动设备和存储资源受限的嵌入式设备。 展开更多
关键词 无人机信号 调制识别 mobilenetv2轻量级神经网络 短时傅里叶变换 能量门限降噪
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部