An optimal sizing method is proposed in this paper for mobile battery energy storage system(MBESS)in the distribution system with renewables.The optimization is formulated as a bi-objective problem,considering the rel...An optimal sizing method is proposed in this paper for mobile battery energy storage system(MBESS)in the distribution system with renewables.The optimization is formulated as a bi-objective problem,considering the reliability improvement and energy transaction saving,simultaneously.To evaluate the reliability of distribution system with MBESS and intermittent generation sources,a new framework is proposed,which is based on zone partition and identification of circuit minimal tie sets.Both analytic and simulation methods for reliability assessment are presented and compared in the framework.Case studies on a modified IEEE benchmark system have verified the performance of the proposed approach.展开更多
基金This work was supported by the National Natural Science Foundation of China(Young Scholar Program 71401017,General Program 51277016)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(Grant No.LAPS14002)+1 种基金Fujian regional science and technology major projects,China(2013H41010151)Hong Kong RGC Theme Based Research Scheme Grant No.T23-407/13-N.
文摘An optimal sizing method is proposed in this paper for mobile battery energy storage system(MBESS)in the distribution system with renewables.The optimization is formulated as a bi-objective problem,considering the reliability improvement and energy transaction saving,simultaneously.To evaluate the reliability of distribution system with MBESS and intermittent generation sources,a new framework is proposed,which is based on zone partition and identification of circuit minimal tie sets.Both analytic and simulation methods for reliability assessment are presented and compared in the framework.Case studies on a modified IEEE benchmark system have verified the performance of the proposed approach.