Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation me...Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.展开更多
为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫...为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。展开更多
With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room te...With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.展开更多
Gd_(0.67)Ca_(0.33)MnO_3(GCMO)thin films grown by laser ablation on SrTiO_3(100)(STO)substrates was studied. Films are highly crystallized, very well epitaxial and single-phased. The ordering magnetic temperature(T_c)o...Gd_(0.67)Ca_(0.33)MnO_3(GCMO)thin films grown by laser ablation on SrTiO_3(100)(STO)substrates was studied. Films are highly crystallized, very well epitaxial and single-phased. The ordering magnetic temperature(T_c)of the films is much higher than the value of bulk samples of similar composition. It is found that the GCMO film exhibits a reversal of its magnetization at low temperature when cooled under a magnetic field. The negative magnetization is a consequence of the rapid increase(~1/T)with decreasing temperature of the magnetization of a sublattice aligned antiparallel to the local field, relative to the magnetic contribution of a second sublattice which is aligned parallel to the applied field.展开更多
The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the in...The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the insulator-metal transition temperature (T_(IM)) shifts to lower temperature. If the doping content is small, the transport properties manifest metallic characteristics in the temperature range of T<T_(IM), while they will obey a thermal activation model in the temperature range of T>T_(IM). Such a behavior may be attributed to the Fe^(3+)-doping and possible Mn ions scattering to electrons. The Fe^(3+) doping may lead to the formation of Fe^(3+)-O^(2-)-Mn^(4+) channels, which could terminate the double exchange Mn^(3+)-O^(2-)-Mn^(4+) channels. The antiferromagnetic clusters of Fe ions may induce the Mn ions to scetter to the electrons.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51372136)the NSFC-Guangdong United Fund (No. U1401246)
文摘Layered F-doped cathode materials 0.3 Li_2 MnO_3-0.7 LiMn_(1/3)Ni_(1/3)CO_(1/3))O_(2-x)F_x(x = 0, 0.01, 0.02, 0.03, 0.04,0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of226 mAh g^(-1) over 100 cycles at 0.1 C and excellent rate performance with discharge capacity of 96 mAh g-1 at 5.0 C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 ℃. It delivers a quite high discharge capacity of 233.7 mAh·g^(-1) at 1.0 C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.
文摘为进一步提高动力电池正极材料锰酸锂(LiMn_2O_4)的循环稳定性,通过溶胶-凝胶法用快离子导体La_(0.8)Sr_(0.2)MnO_3作为包覆材料对LiMn_2O_4进行表面修饰,探讨了不同包覆量对复合材料电化学性能的影响。采用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和透射电子显微镜(TEM)对样品的微观结构以及形貌进行表征。结果表明:La_(0.8)Sr_(0.2)MnO_3的包覆并没有改变LiMn_2O_4晶体结构及空间构型;相比纯的LiMn_2O_4样品,La_(0.8)Sr_(0.2)MnO_3包覆后的样品颗粒表面较为粗糙;涂层为薄膜状结构,均匀且完全包覆在LiMn_2O_4颗粒的表面。利用电化学测试方法测试其电化学性能,测试结果表明,当La_(0.8)Sr_(0.2)MnO_3包覆量为5%时,具有较好的电化学性能,首次放电比容量为127.4 m A·h/g(0.1 C),25℃循环400次后容量保持率为91.2%,55℃循环100次后容量保持率为91.1%;与未经表面修饰的样品相比,其首次放电比容量为119.1 m A·h/g(0.1 C),400次的容量保持率为61.9%,100次容量保持率为77.9%,La_(0.8)Sr_(0.2)MnO_3包覆后的样品的电化学性能尤其是循环性能得到明显的提高。
文摘With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.
文摘Gd_(0.67)Ca_(0.33)MnO_3(GCMO)thin films grown by laser ablation on SrTiO_3(100)(STO)substrates was studied. Films are highly crystallized, very well epitaxial and single-phased. The ordering magnetic temperature(T_c)of the films is much higher than the value of bulk samples of similar composition. It is found that the GCMO film exhibits a reversal of its magnetization at low temperature when cooled under a magnetic field. The negative magnetization is a consequence of the rapid increase(~1/T)with decreasing temperature of the magnetization of a sublattice aligned antiparallel to the local field, relative to the magnetic contribution of a second sublattice which is aligned parallel to the applied field.
文摘The transport properties were studied for rare earth manganese oxide La_(0.67)Ca_(0.33)Mn_(1-x)Fe_xO_3 (x=0~0.3) systems. It is found that with increasing Fe^(3+)-doping content x, the resistance increases and the insulator-metal transition temperature (T_(IM)) shifts to lower temperature. If the doping content is small, the transport properties manifest metallic characteristics in the temperature range of T<T_(IM), while they will obey a thermal activation model in the temperature range of T>T_(IM). Such a behavior may be attributed to the Fe^(3+)-doping and possible Mn ions scattering to electrons. The Fe^(3+) doping may lead to the formation of Fe^(3+)-O^(2-)-Mn^(4+) channels, which could terminate the double exchange Mn^(3+)-O^(2-)-Mn^(4+) channels. The antiferromagnetic clusters of Fe ions may induce the Mn ions to scetter to the electrons.