Both ultra-reliable low latency and high-data-rate communications are required by connective vehicles. Millimeter wave(mm Wave) with large bandwidth is a key technology to support high-data-rate communications. In thi...Both ultra-reliable low latency and high-data-rate communications are required by connective vehicles. Millimeter wave(mm Wave) with large bandwidth is a key technology to support high-data-rate communications. In this paper, the 28 GHz wideband vehicle-to-infrastructure channel is characterized for the urban environment in a major street in Manhattan. The deployment of the transmitter and the receiver, as well as the traffic models, are selected by considering the recommendation by 3GPP TR 37.885. Ray tracing simulator with calibrated electromagnetic parameters is employed in this work to practically conduct intensive simulations. The 3D environment model is reconstructed from OpenStreetMap. The power delay profile, path loss, root-meansquare delay spread, K-factor and so on, are extracted from the calibrated simulation results. The evolution of the parameters, as well as their statistical properties, are analyzed and modeled. The work of this paper helps the researchers understand the propagation channel for designing mmWave technologies and communication system in a similar scenario.展开更多
A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least...A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.展开更多
With the rapid growth of wireless data demand and the shortage of global bandwidth,the use of millimeter-wave(mmWave)frequency band for wireless cellular networks has become the core content of the fifth generation ce...With the rapid growth of wireless data demand and the shortage of global bandwidth,the use of millimeter-wave(mmWave)frequency band for wireless cellular networks has become the core content of the fifth generation cellular network.Because mmWave communication has different characteristics from microwave communication,using traditional optimization techniques to manage the resource of mmWave communication networks is inappropriate.In this paper,we propose a neural network-based algorithm to solve the joint user association and resource allocation for mmWave communication system with multi-connectivity(MC)and integrated access backhaul(IAB).The resource allocation problem is formulated as a mixed-integer quadratically constrained quadratic programming(MIQCQP),which is very difficult to solve.First,we decompose the MIQCQP into two sub-problems,i.e.,binary associated matrix sub-problem and continuous IAB ratio sub-problem.Then we propose a neural network to solve the binary associated matrix inference problem and a resource allocation algorithm to find the sub-optimal IAB ratio.Simulation results show that the proposed algorithm can achieve good performance with a fast inference speed.展开更多
In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, because of the high hardware cost and high power consumption, the traditional fully digital beamforming (DBF) cannot be implemen...In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, because of the high hardware cost and high power consumption, the traditional fully digital beamforming (DBF) cannot be implemented easily. Meanwhile, analog beamforming which is implemented with phase shifters has high availability but suffers poor performance. Considering the advantages of above two, a potential solution is to design an appropriate hybrid analog and digital beamforming structure, where the available iterative optimization algorithm can get performance close to fully digital processing, but solving this sparse optimization problem faces with a high computational complexity. The key challenge of seeking out hybrid beamforming (HBF) matrices lies in leveraging the trade-off between the spectral efficiency performance and the computational complexity. In this paper, we propose an asymptotically unitary hybrid precoding (AUHP) algorithm based on antenna array response (AAR) properties to solve the HBF optimization problem. Firstly, we get the optimal orthogonal analog and digital beamforming matrices relying on the channel's path gain in absolute value by taking into account that the AAR matrices are asymptotically unitary. Then, an improved simultaneously orthogonal matching pursuit (SOMP) algorithm based on recursion is adopted to refine the hybrid combining. Numerical results demonstrate that our proposed AUHP algorithm enables a lower computational complexity with negligible spectral efficiency performance degradation.展开更多
Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynami...Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method.展开更多
High-throughput satellites(HTSs) play an important role in future millimeter-wave(mm Wave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance...High-throughput satellites(HTSs) play an important role in future millimeter-wave(mm Wave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance of an aeronautical broadband satellite communication system’s forward link, where the feeder link from the gateway to the HTS uses free-space optical(FSO) transmission and the user link from the HTS to aircraft operates at the mm Wave band. In the user link, spot beam technology is exploited at the HTS and a massive antenna array is deployed at the aircraft. We first present a location-based beamforming(BF) scheme to maximize the expected output signal-to-noise ratio(SNR) of the forward link with the amplify-and-forward(AF) protocol,which turns out to be a phased array. Then, by supposing that the FSO feeder link follows Gamma-Gamma fading whereas the mm Wave user link experiences shadowed Rician fading, we take the influence of the phase error into account, and derive the closed-form expression of the outage probability(OP) for the considered system. To gain further insight, a simple asymptotic OP expression at a high SNR is provided to show the diversity order and coding gain. Finally, numerical simulations are conducted to confirm the validity of the theoretical analysis and reveal the effects of phase errors on the system outage performance.展开更多
This paper investigates the performance of the W band millimeter wave (mmWave) backhaul network proposed by our EU TWEETHER project. We focus on the downlink transmission of the mmWave backhaul network, in which each ...This paper investigates the performance of the W band millimeter wave (mmWave) backhaul network proposed by our EU TWEETHER project. We focus on the downlink transmission of the mmWave backhaul network, in which each of the hubs serves a cluster of base stations (BSs). In the considered backhaul network, available frequency resources are first allocated to the downlink links with the consideration of fairness issue. In order to mitigate interference in the mmWave backhaul network, each hub operates the proposed algorithm, namely cooperation and power adaptation (CPA). Our simulation results show that, the backhaul network with mmWave capabilities can achieve a significant better throughput performance than the sub-6 GHz ultra high frequency (UHF) backhaul network. Furthermore, our simulations also reveal that the proposed CPA algorithm can efficiently combat interference in the backhaul network.展开更多
The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,a...The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.展开更多
基金supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. 2018-0-00792, QoE improvement of open Wi-Fi on public transportation for the reduction of communication expense)
文摘Both ultra-reliable low latency and high-data-rate communications are required by connective vehicles. Millimeter wave(mm Wave) with large bandwidth is a key technology to support high-data-rate communications. In this paper, the 28 GHz wideband vehicle-to-infrastructure channel is characterized for the urban environment in a major street in Manhattan. The deployment of the transmitter and the receiver, as well as the traffic models, are selected by considering the recommendation by 3GPP TR 37.885. Ray tracing simulator with calibrated electromagnetic parameters is employed in this work to practically conduct intensive simulations. The 3D environment model is reconstructed from OpenStreetMap. The power delay profile, path loss, root-meansquare delay spread, K-factor and so on, are extracted from the calibrated simulation results. The evolution of the parameters, as well as their statistical properties, are analyzed and modeled. The work of this paper helps the researchers understand the propagation channel for designing mmWave technologies and communication system in a similar scenario.
文摘A cooperative passive sensing framework for millimeter wave(mmWave)communication systems is proposed and demonstrated in a scenario with one mobile signal blocker.Specifically,in the uplink communication with at least two transmitters,a cooperative detection method is proposed for the receiver to track the blocker’s trajectory,localize the transmitters and detect the potential link blockage jointly.To facilitate detection,the receiver collects the signal of each transmitter along a line-of-sight(LoS)path and a non-line-of-sight(NLoS)path separately via two narrow-beam phased arrays.The NLoS path involves scattering at the mobile blocker,allowing its identification through the Doppler frequency.By comparing the received signals of both paths,the Doppler frequency and angle-of-arrival(AoA)of the NLoS path can be estimated.To resolve the blocker’s trajectory and the transmitters’locations,the receiver should continuously track the mobile blocker to accumulate sufficient numbers of the Doppler frequency and AoA versus time observations.Finally,a gradient-descent-based algorithm is proposed for joint detection.With the reconstructed trajectory,the potential link blockage can be predicted.It is demonstrated that the system can achieve decimeterlevel localization and trajectory estimation,and predict the blockage time with an error of less than 0.1 s.
文摘With the rapid growth of wireless data demand and the shortage of global bandwidth,the use of millimeter-wave(mmWave)frequency band for wireless cellular networks has become the core content of the fifth generation cellular network.Because mmWave communication has different characteristics from microwave communication,using traditional optimization techniques to manage the resource of mmWave communication networks is inappropriate.In this paper,we propose a neural network-based algorithm to solve the joint user association and resource allocation for mmWave communication system with multi-connectivity(MC)and integrated access backhaul(IAB).The resource allocation problem is formulated as a mixed-integer quadratically constrained quadratic programming(MIQCQP),which is very difficult to solve.First,we decompose the MIQCQP into two sub-problems,i.e.,binary associated matrix sub-problem and continuous IAB ratio sub-problem.Then we propose a neural network to solve the binary associated matrix inference problem and a resource allocation algorithm to find the sub-optimal IAB ratio.Simulation results show that the proposed algorithm can achieve good performance with a fast inference speed.
基金supported by the National Natural Science Foundation of China(61201134)State Key Science and Research Project(MJ-2014-S-37)the 111 Project(B08038)
文摘In millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems, because of the high hardware cost and high power consumption, the traditional fully digital beamforming (DBF) cannot be implemented easily. Meanwhile, analog beamforming which is implemented with phase shifters has high availability but suffers poor performance. Considering the advantages of above two, a potential solution is to design an appropriate hybrid analog and digital beamforming structure, where the available iterative optimization algorithm can get performance close to fully digital processing, but solving this sparse optimization problem faces with a high computational complexity. The key challenge of seeking out hybrid beamforming (HBF) matrices lies in leveraging the trade-off between the spectral efficiency performance and the computational complexity. In this paper, we propose an asymptotically unitary hybrid precoding (AUHP) algorithm based on antenna array response (AAR) properties to solve the HBF optimization problem. Firstly, we get the optimal orthogonal analog and digital beamforming matrices relying on the channel's path gain in absolute value by taking into account that the AAR matrices are asymptotically unitary. Then, an improved simultaneously orthogonal matching pursuit (SOMP) algorithm based on recursion is adopted to refine the hybrid combining. Numerical results demonstrate that our proposed AUHP algorithm enables a lower computational complexity with negligible spectral efficiency performance degradation.
文摘Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method.
基金Project supported by the Key International Cooperation Research Project (No. 61720106003)the National Natural Science Foundation of China (No. 61801234)+2 种基金the Shanghai Aerospace Science and Technology Innovation Foundation (No. SAST2019-095)the Research Project of Science and Technology on Complex Electronic System Simulation Laboratory (No. DXZT-JCZZ-2019-009),NUPTSF (No. NY220111)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China (Nos. KYCX190950 and KYCX200724)。
文摘High-throughput satellites(HTSs) play an important role in future millimeter-wave(mm Wave) aeronautical communication to meet high speed and broad bandwidth requirements. This paper investigates the outage performance of an aeronautical broadband satellite communication system’s forward link, where the feeder link from the gateway to the HTS uses free-space optical(FSO) transmission and the user link from the HTS to aircraft operates at the mm Wave band. In the user link, spot beam technology is exploited at the HTS and a massive antenna array is deployed at the aircraft. We first present a location-based beamforming(BF) scheme to maximize the expected output signal-to-noise ratio(SNR) of the forward link with the amplify-and-forward(AF) protocol,which turns out to be a phased array. Then, by supposing that the FSO feeder link follows Gamma-Gamma fading whereas the mm Wave user link experiences shadowed Rician fading, we take the influence of the phase error into account, and derive the closed-form expression of the outage probability(OP) for the considered system. To gain further insight, a simple asymptotic OP expression at a high SNR is provided to show the diversity order and coding gain. Finally, numerical simulations are conducted to confirm the validity of the theoretical analysis and reveal the effects of phase errors on the system outage performance.
文摘This paper investigates the performance of the W band millimeter wave (mmWave) backhaul network proposed by our EU TWEETHER project. We focus on the downlink transmission of the mmWave backhaul network, in which each of the hubs serves a cluster of base stations (BSs). In the considered backhaul network, available frequency resources are first allocated to the downlink links with the consideration of fairness issue. In order to mitigate interference in the mmWave backhaul network, each hub operates the proposed algorithm, namely cooperation and power adaptation (CPA). Our simulation results show that, the backhaul network with mmWave capabilities can achieve a significant better throughput performance than the sub-6 GHz ultra high frequency (UHF) backhaul network. Furthermore, our simulations also reveal that the proposed CPA algorithm can efficiently combat interference in the backhaul network.
文摘The mmWave communication is a promising technique to enable human commutation and a large number of machine-type commu⁃nications of massive data from various non-cellphone devices like Internet of Things(IoT)devices,autonomous vehicles and remotely con⁃trolled robots.For this reason,information security,in terms of the confidentiality,integrity and availability(CIA),becomes more important in the mmWave communication than ever since.The physical layer security(PLS),which is based on the information theory and focuses on the secrecy capacity of the wiretap channel model,is a cost effective and scalable technique to protect the CIA,compared with the traditional cryptographic techniques.In this paper,the theory foundation of PLS is briefly introduced together with the typical PLS performance metrics secrecy rate and outage probability.Then,the most typical PLS techniques for mmWave are introduced,analyzed and compared,which are classified into three major categories of directional modulation(DM),artificial noise(AN),and directional precoding(DPC).Finally,several mmWave PLS research problems are briefly discussed,including the low-complexity DM weight vector codebook construction,impact of phase shifter(PS)with finite precision on PLS,and DM-based communications for multiple target receivers.