针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转...针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。展开更多
针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle...针对混合矩阵估计算法中传统的噪声环境下基于密度的空间聚类(density-based spatial clustering of applications with noise,DBSCAN)算法需要人为设定邻域半径以及核心点数这一问题,提出双约束粒子群优化(double constrained particle swarm optimization,DCPSO)算法,对DBSCAN算法的邻域半径参数进行寻优,将得到的最优参数作为DBSCAN算法的参数输入,然后计算聚类中心,完成混合矩阵估计。针对基于距离排序的源信号数目估计算法存在依靠经验参数的选取且不具备噪声点剔除能力的问题,提出了最大距离排序算法。实验结果表明,所提算法较相应的对比算法皆有提升,源信号数目估计准确率较原算法提高近40%,混合矩阵估计的误差较对比算法提升3 dB以上,且所提算法在收敛速度上优于原算法。展开更多
文摘针对欠定盲源分离中混合矩阵估计精度不佳的问题,本文提出了一种结合带噪声的基于密度的空间聚类(combining density-based spatial clustering of application with noise,DBSCAN)和概率密度估计的混合矩阵估计算法。首先,通过向量转换方式获得单声源时频点检测准则,并基于此准则从混合信号中检测出单声源点。其次,利用基于密度的空间聚类算法对单声源点进行聚类,由此估计出声源个数以及各类别所属的单声源点。再次,利用概率密度估计获得各类别的聚类中心,并构成混合矩阵。所提混合矩阵估计方法不需要提前设定声源个数,并且避免了由于数据分布不均所造成的聚类效果差的问题。最后,采用压缩感知技术实现源信号恢复,从而从混合信号中分离出各个声源信号。实验结果表明,本文所提的混合矩阵估计方法在声源个数未知的情况下,能够准确估计出混合矩阵;并且分离出的信号具有较高的质量。