Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited in...Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited information.A complex hybrid reliability problem then will be caused when the random and interval variables coexist in a same structure.In this paper,by introducing the response surface technique,we develop a new hybrid reliability method to efficiently compute the interval of the failure probability of the structure due to the probability-interval hybrid uncertainty.The present method consists of a sequence of iterations.At each step,a response surface model is constructed for the limit-state function by using a quadratic polynomial and a modified axial experimental design method.An approximate hybrid reliability problem is created based on the response surface model,which is subsequently solved by an efficient decoupling approach.An updating strategy is suggested to improve the quality of the response surface and whereby ensure the reliability analysis precision.A computational procedure is then summarized for the whole iterations.Four numerical examples and also a practical application are provided to demonstrate the effectiveness of the present method.展开更多
Large-scale integration of wind power generation decreases the equivalent inertia of a power system, and thus makes frequency stability control challenging. However, given the irregular, nonlinear, and non-stationary ...Large-scale integration of wind power generation decreases the equivalent inertia of a power system, and thus makes frequency stability control challenging. However, given the irregular, nonlinear, and non-stationary characteristics of wind power, significant challenges arise in making wind power generation participate in system frequency regulation. Hence, it is important to explore wind power frequency regulation potential and its uncertainty. This paper proposes an innovative uncertainty modeling method based on mixed skew generalized error distribution for wind power frequency regulation potential. The mapping relationship between wind speed and the associated frequency regulation potential is established, and key parameters of the wind turbine model are identified to predict the wind power frequency regulation potential. Furthermore, the prediction error distribution of the frequency regulation potential is obtained from the mixed skew model. Because of the characteristics of error partition, the error distribution model and predicted values at different wind speed sections are summarized to generate the uncertainty interval of wind power frequency regulation potential. Numerical experiments demonstrate that the proposed model outperforms other state-of-the-art contrastive models in terms of the refined degree of fitting error distribution characteristics. The proposed model only requires the wind speed prediction sequence to accurately model the uncertainty interval. This should be of great significance for rationally optimizing system frequency regulation resources and reducing redundant backup.展开更多
叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,...叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,另一种情况是由不同端元形成的混合像元。结果表明,不同长势形成的混合像元对LAI的准确反演影响不大;不同组分形成的混合像元对LAI反演影响很大。从验证的角度讲,地面实测点的LAI数据不能代表一定分辨率区域的LAI的值,对于像元LAI的验证要注意正确获得像元的LAI。展开更多
In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems...In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.展开更多
基金supported by the National Science Foundation for Excellent Young Scholars(Grant No.51222502)the Key Project of Chinese National Programs for Fundamental Research and Development(Grant No.2010CB832700)+1 种基金the National Natural Science Foundation of China(Grant No.11172096)the Key Program of the National Natural Science Foundation of China(Grant No.11232004)
文摘Traditional reliability analysis requires probability distributions of all the uncertain parameters.However,in many practical applications,the variation bounds can be only determined for the parameters with limited information.A complex hybrid reliability problem then will be caused when the random and interval variables coexist in a same structure.In this paper,by introducing the response surface technique,we develop a new hybrid reliability method to efficiently compute the interval of the failure probability of the structure due to the probability-interval hybrid uncertainty.The present method consists of a sequence of iterations.At each step,a response surface model is constructed for the limit-state function by using a quadratic polynomial and a modified axial experimental design method.An approximate hybrid reliability problem is created based on the response surface model,which is subsequently solved by an efficient decoupling approach.An updating strategy is suggested to improve the quality of the response surface and whereby ensure the reliability analysis precision.A computational procedure is then summarized for the whole iterations.Four numerical examples and also a practical application are provided to demonstrate the effectiveness of the present method.
基金supported by Science and Technology Project of State Grid Corporation of China(State Grid Jiangsu Electric Power Research Institute Power Coordinated Control Technology Research Service for Energy Storage and New Energy Power Stations in the Black Start Process,Contract Number:SGJSDK00XTJS2000357).
文摘Large-scale integration of wind power generation decreases the equivalent inertia of a power system, and thus makes frequency stability control challenging. However, given the irregular, nonlinear, and non-stationary characteristics of wind power, significant challenges arise in making wind power generation participate in system frequency regulation. Hence, it is important to explore wind power frequency regulation potential and its uncertainty. This paper proposes an innovative uncertainty modeling method based on mixed skew generalized error distribution for wind power frequency regulation potential. The mapping relationship between wind speed and the associated frequency regulation potential is established, and key parameters of the wind turbine model are identified to predict the wind power frequency regulation potential. Furthermore, the prediction error distribution of the frequency regulation potential is obtained from the mixed skew model. Because of the characteristics of error partition, the error distribution model and predicted values at different wind speed sections are summarized to generate the uncertainty interval of wind power frequency regulation potential. Numerical experiments demonstrate that the proposed model outperforms other state-of-the-art contrastive models in terms of the refined degree of fitting error distribution characteristics. The proposed model only requires the wind speed prediction sequence to accurately model the uncertainty interval. This should be of great significance for rationally optimizing system frequency regulation resources and reducing redundant backup.
文摘叶面积指数(Leaf Area Index)可用来反映作物的生长状况,常作为主要指标应用于农作物估产。本文研究遥感中常见的混合像元问题对LAI反演所带来的不确定性问题。研究的混合像元由两种情况构成,一种是由不同长势的作物所构成的混合像元,另一种情况是由不同端元形成的混合像元。结果表明,不同长势形成的混合像元对LAI的准确反演影响不大;不同组分形成的混合像元对LAI反演影响很大。从验证的角度讲,地面实测点的LAI数据不能代表一定分辨率区域的LAI的值,对于像元LAI的验证要注意正确获得像元的LAI。
基金partially supported by the National Natural Science Foundation of China(52375238)Science and Technology Program of Guangzhou(202201020213,202201020193,202201010399)GZHU-HKUST Joint Research Fund(YH202109).
文摘In time-variant reliability problems,there are a lot of uncertain variables from different sources.Therefore,it is important to consider these uncertainties in engineering.In addition,time-variant reliability problems typically involve a complexmultilevel nested optimization problem,which can result in an enormous amount of computation.To this end,this paper studies the time-variant reliability evaluation of structures with stochastic and bounded uncertainties using a mixed probability and convex set model.In this method,the stochastic process of a limit-state function with mixed uncertain parameters is first discretized and then converted into a timeindependent reliability problem.Further,to solve the double nested optimization problem in hybrid reliability calculation,an efficient iterative scheme is designed in standard uncertainty space to determine the most probable point(MPP).The limit state function is linearized at these points,and an innovative random variable is defined to solve the equivalent static reliability analysis model.The effectiveness of the proposed method is verified by two benchmark numerical examples and a practical engineering problem.