c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studie...c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper(bZIP)transcription factor that acts as homo-or heterodimer,binding to DNA and regulating gene transcription.Later on,it was shown that extracellular signals can induce post-translational modifications of c-Jun,resulting in altered transcriptional activity and target gene expression.More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk,amplify and integrate different signals for tissue development and disease.One example of such scheme is the autocrine amplification loop,in which signal-induced AP-1 activates the c-Jun gene promoter,while increased c-Jun expression feedbacks to potentiate AP-1 activity.Another example of such scheme,based on recent characterization of gene knockout mice,is that c-Jun integrates signals of several developmental pathways,including EGFR-ERK,EGFR-RhoA-ROCK,and activin B-MAP3K1-JNK for embryonic eyelid closure.After more than two decades of extensive research,c-Jun remains at the center stage of a molecular network with mysterious functional properties,some of which are yet to be discovered.In this article,we will provide a brief historical overview of studies on c-Jun regulation and function,and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.展开更多
Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancrea...Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pan-creatitis characterized by marked stroma formation with a high number of infiltrating granulocytes(such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells(PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in pro-moting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways(i.e., Transforming growth factor-β/SMAD, mitogen--activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin(IL)-1, IL-1β, IL-6, IL--8 IL-10, IL-18, IL--33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.展开更多
Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytok...Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytokine production. However, precise mechanisms on how C. trachomatis triggers this production, and which protein(s) stimulate inflammatory cytokines remains unknown. In the present study, the C. trachomatis pORF5 protein induced tumor necrosis factor alpha (TNF-a), interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) in dose and time-dependent manners in the THP-1 human monocyte cell line. We found that intracellular p38/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)/MAPK signaling pathways were required for the induction of TNF- a, IL-1β and IL-8. Blockade of toll-like receptor 2 (TLR2) signaling reduced induction levels of TNF-a, IL-8 and IL-1β. We concluded that the C. trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.展开更多
AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK)...AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si展开更多
Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional ...Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.展开更多
AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological p...AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was fo展开更多
We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly ...We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.展开更多
Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cyt...Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory efibcts of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 pmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P〈0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P〈0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer.展开更多
It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a co...It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a complex and heterogeneous tumor with several genomic mutations,it usually develops in the context of chronic liver damage and inflammation,suggesting that understanding the mechanism(s) of inflammation-mediated hepatocarcinogenesis is essential for the treatment and prevention of HCC.Chronic liver damage induces a persistent cycle of necroinflammation and hepatocyte regeneration,resulting in genetic mutations in hepatocytes and expansion of initiated cells,eventually leading to HCC development.Recently,several inflammation-and stress-related signaling pathways have been identified as key players in these processes,which include the nuclear factor B,signal transducer and activator of transcription,and stress-activated mitogen-activated protein kinase pathways.Although these pathways may suggest potential therapeutic targets,they have a wide range of functions and complex crosstalk occurs among them.This review focuses on recent advances in our understanding of the roles of these signaling pathways in hepatocarcinogenesis.展开更多
AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) a...AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.展开更多
AIM:To investigate trefoil factor(TFF) gene copy number,mRNA and protein expression as potential biomarkers in cholangiocarcinoma(CCA).METHODS:TFF mRNA levels,gene copy number and protein expression were determined re...AIM:To investigate trefoil factor(TFF) gene copy number,mRNA and protein expression as potential biomarkers in cholangiocarcinoma(CCA).METHODS:TFF mRNA levels,gene copy number and protein expression were determined respectively by quantitative reverse transcription polymerase chain reaction(PCR),quantitative PCR and immunohistochemistry in bile duct epithelium biopsies collected from individuals with CCA,precancerous bile duct dysplasia and from disease-free controls.The functional impact of recombinant human(rh) TFF2 peptide treatment on proliferation and epidermal growth factor receptor(EGFR) /mitogenactivated protein kinase(MAPK) signaling was assessed in the CCA cell line,KMBC,by viable cell counting and immunoblotting,respectively.RESULTS:TFF1,TFF2 and TFF3 mRNA expression was significantly increased in CCA tissue compared to disease-free controls,and was unrelated to gene copy number.TFF1 immunoreactivity was strongly increased in both dysplasia and CCA,whereas TFF2 immunoreactivity was increased only in CCA compared to diseasefree controls.By contrast,TFF3 immunoreactivity was moderately decreased in dysplasia and further decreased in CCA.Kaplan-Meier analysis found no association of TFF mRNA,protein and copy number with age,gender,histological subtype,and patient survival time.Treatment of KMBC cells with rhTFF2 stimulated proliferation,triggered phosphorylation of EGFR and downstream extracellular signal related kinase(ERK),whereas co-incubation with the EGFR tyrosine kinase inhibitor,PD153035,blocked rhTFF2-dependent proliferation and EGFR/ERK responses.CONCLUSION:TFF mRNA/protein expression is indicative of CCA tumor progression,but not predictive for histological sub-type or survival time.TFF2 is mitogenic in CCA via EGFR/MAPK activation.展开更多
Shenfu injection(SFI), a Chinese medicinal product, shows potent efficacy in treating sepsis. The aim of the present study was to clarify the protective effects of SFI against lipopolysaccharide(LPS)-induced myocardia...Shenfu injection(SFI), a Chinese medicinal product, shows potent efficacy in treating sepsis. The aim of the present study was to clarify the protective effects of SFI against lipopolysaccharide(LPS)-induced myocardial inflammation and apoptosis.Experiments were carried out in Sprague-Dawley(SD) rats treated with LPS or LPS + SFI, and in H9 C2 cardiomyocytes. The sepsisassociated myocardial inflammation and apoptosis was induced by the intraperitoneal injection of LPS(20 mg·kg–1). SFI attenuated the increased expression of tumor necrosis factor(TNF)-α and interleukin(IL)-1β induced by LPS both in serum and heart. In LPS group,cell viability was reduced, and reversed after SFI administration. LPS treatment increased the expression levels of cleaved-caspase 3 and Bax, and those of Bcl2 and Bcl2/Bax. These two trends were reversed by SFI administration. The expression levels of phosphorylated mitogen-activated protein kinase kinase(p-MEK) and phosphorylated extracellular regulated protein kinases(p-ERK) were increased by LPS, and reversed by SFI. MEK inhibitor U0126 attenuated the apoptosis induced by LPS. These results indicate that SFI could treat LPS-induced cardiac dysfunction. In conclusion, SFI attenuates the inflammation and apoptosis induced by LPS via downregulating the MEK and ERK signaling pathways.展开更多
Background:Gastric cancer(GC)is one of the most common malignancies worldwide,particularly in China.DNA damage-inducible transcript 4(DDIT4)is a mammalian target of rapamycin inhibitor and is induced by various cellul...Background:Gastric cancer(GC)is one of the most common malignancies worldwide,particularly in China.DNA damage-inducible transcript 4(DDIT4)is a mammalian target of rapamycin inhibitor and is induced by various cellular stresses;however,its critical role in GC remains poorly understood.The present study aimed to investigate the poten-tial relationship and the underlying mechanism between DDIT4 and GC development.Methods:We used western blotting,real-time polymerase chain reaction,and immunohistochemical or immunoflu-orescence to determine DDIT4 expression in GC cells and tissues.High-content screening,cell counting kit-8 assays,colony formation,and in vivo tumorigenesis assays were performed to evaluate cell proliferation.Flow cytometry was used to investigate cell apoptosis and cell cycle distribution.Results:DDIT4 was upregulated in GC cells and tissue.Furthermore,downregulating DDIT4 in GC cells inhibited proliferation both in vitro and in vivo and increased 5-fluorouracil-induced apoptosis and cell cycle arrest.In contrast,ectopic expression of DDIT4 in normal gastric epithelial cells promoted proliferation and attenuated chemosensitivity.Further analysis indicated that the mitogen-activated protein kinase and p53 signaling pathways were involved in the suppression of proliferation,and increased chemosensitivity upon DDIT4 downregulation.Conclusion:DDIT4 promotes GC proliferation and tumorigenesis,providing new insights into the role of DDIT4 in the tumorigenesis of human GC.展开更多
Reactive oxygen species (ROS) are molecules or ions formed by the incomplete one-electron reduction of oxygen. Ofinterest, it seems that ROS manifest dual roles, cancer promoting or cancer suppressing, in tumorigenesi...Reactive oxygen species (ROS) are molecules or ions formed by the incomplete one-electron reduction of oxygen. Ofinterest, it seems that ROS manifest dual roles, cancer promoting or cancer suppressing, in tumorigenesis. ROS participate simultaneously in two signaling pathways that have inverse functions in tumorigenesis, Ras-Raf-MEK1/2-ERK1/2 signaling and the p38 mitogen-activated protein kinases (MAPK) pathway. It is well known that Ras-Raf-MEK1/2-ERK1/2 signaling is related to oncogenesis, while the p38 MAPK pathway contributes to cancer suppression, which involves oncogene-induced senescence, inflammationinduced cellular senescence, replicative senescence, contact inhibition and DNA-damage responses. Thus, ROS may not be an absolute carcinogenic factor or cancer suppressor. The purpose of the present review is to discuss the dual roles of ROS in the pathogenesis of cancer, and the signaling pathway mediating their role in tumorigenesis.展开更多
AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intest...AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.展开更多
After spinal cord injury, dysregulated miRNAs appear and can participate in inflammatory responses, as well as the inhibition of apoptosis and axon regeneration through multiple pathways. However, the functions of miR...After spinal cord injury, dysregulated miRNAs appear and can participate in inflammatory responses, as well as the inhibition of apoptosis and axon regeneration through multiple pathways. However, the functions of miRNAs in spinal cord ischemia-reperfusion injury progression remain unclear. miRCURY LNATM Arrays were used to analyze miRNA expression profiles of rats after 90 minutes of ischemia followed by reperfusion for 24 and 48 hours. Furthermore, subsequent construction of aberrantly expressed miRNA regulatory patterns involved cell survival, proliferation, and apoptosis. Remarkably, the mitogen-activated protein kinase(MAPK) signaling pathway was the most significantly enriched pathway among 24-and 48-hour groups. Bioinformatics analysis and quantitative reverse transcription polymerase chain reaction confirmed the persistent overexpression of miR-22-3 p in both groups. These results suggest that the aberrant miRNA regulatory network is possibly regulated MAPK signaling and continuously affects the physiological and biochemical status of cells, thus participating in the regulation of spinal cord ischemia-reperfusion injury. As such, miR-22-3 p may play sustained regulatory roles in spinal cord ischemia-reperfusion injury. All experimental procedures were approved by the Animal Ethics Committee of Jilin University, China [approval No. 2020(Research) 01].展开更多
OBJECTIVE: To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). METHODS: The serum pharmacological method was used to avoid interference from administration of the crud...OBJECTIVE: To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). METHODS: The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred NewZealand rabbits were used for preparation of serum containing various concentrations of AETC. For- ty-eight Balb/c-nu mice were used for in vivo experi- ments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mito- gen-activated protein kinase (EGFR/MAPK) path- way-related proteins in vitro were investigated. Ad- ditionally, the effects on the growth of A549 xeno- grafts in nude mice, and expression levels of the EG- FR/MAPK pathway-related proteins in the xeno- grafts, were investigated. RESULTS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the ex- pression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts.CONCLUSION: AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.展开更多
AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was us...AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was used to isolate a novel isoform of hHPO in this paper. The constructed pcDNA(HPO-205), pcDNA(HPO) and pcDNA eukaryotic expression vectors were respectively transfected by lipofectamine method and the stimulation of DNA synthesis was observed by (3)H-TdR incorporation assay. Proteins extracted from different cells were analyzed by Western blot. RESULTS: A novel isoform of hHPO (HPO-205) encoding a 205 amino acid ORF corresponding to a translated production of 23 kDa was isolated and distinguished from the previous HPO that lacked the N-terminal 80 amino acids. The dose-dependent stimulation of DNA synthesis of HepG2 hepatoma cells by HPO-205 demonstrated its similar biological activity with HPO in vitro. The level of MAPK (Mitogen-activated protein kinase) phosphorylation by Western blot analysis revealed that HPO-205 might have the stronger activity of stimulating hepatic cell proliferation than that of HPO. CONCLUSION: A novel isoform of hHPO (HPO-205) was isolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure and function of hHPO, and provide the new way of thinking to deeply elucidate the biological roles of HPO/ALR.展开更多
The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the pr...The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.展开更多
文摘c-Jun,the most extensively studied protein of the activator protein-1(AP-1)complex,is involved in numerous cell activities,such as proliferation,apoptosis,survival,tumorigenesis and tissue morphogenesis.Earlier studies focused on the structure and function have led to the identification of c-Jun as a basic leucine zipper(bZIP)transcription factor that acts as homo-or heterodimer,binding to DNA and regulating gene transcription.Later on,it was shown that extracellular signals can induce post-translational modifications of c-Jun,resulting in altered transcriptional activity and target gene expression.More recent work has uncovered multiple layers of a complex regulatory scheme in which c-Jun is able to crosstalk,amplify and integrate different signals for tissue development and disease.One example of such scheme is the autocrine amplification loop,in which signal-induced AP-1 activates the c-Jun gene promoter,while increased c-Jun expression feedbacks to potentiate AP-1 activity.Another example of such scheme,based on recent characterization of gene knockout mice,is that c-Jun integrates signals of several developmental pathways,including EGFR-ERK,EGFR-RhoA-ROCK,and activin B-MAP3K1-JNK for embryonic eyelid closure.After more than two decades of extensive research,c-Jun remains at the center stage of a molecular network with mysterious functional properties,some of which are yet to be discovered.In this article,we will provide a brief historical overview of studies on c-Jun regulation and function,and use eyelid development as an example to illustrate the complexity of c-Jun crosstalking with signaling pathways.
基金Supported by National Institutes of Health,Nos.R01 DK067255 and R01 AI080581
文摘Pancreatitis is inflammation of pancreas and caused by a number of factors including pancreatic duct obstruction, alcoholism, and mutation in the cationic trypsinogen gene. Pancreatitis is represented as acute pancreatitis with acute inflammatory responses and; chronic pan-creatitis characterized by marked stroma formation with a high number of infiltrating granulocytes(such as neutrophils, eosinophils), monocytes, macrophages and pancreatic stellate cells(PSCs). These inflammatory cells are known to play a central role in initiating and promoting inflammation including pancreatic fibrosis, i.e., a major risk factor for pancreatic cancer. A number of inflammatory cytokines are known to involve in pro-moting pancreatic pathogenesis that lead pancreatic fibrosis. Pancreatic fibrosis is a dynamic phenomenon that requires an intricate network of several autocrine and paracrine signaling pathways. In this review, we have provided the details of various cytokines and molecular mechanistic pathways(i.e., Transforming growth factor-β/SMAD, mitogen--activated protein kinases, Rho kinase, Janus kinase/signal transducers and activators, and phosphatidylinositol 3 kinase) that have a critical role in the activation of PSCs to promote chronic pancreatitis and trigger the phenomenon of pancreatic fibrogenesis. In this review of literature, we discuss the involvement of several pro-inflammatory and anti-inflammatory cytokines, such as in interleukin(IL)-1, IL-1β, IL-6, IL--8 IL-10, IL-18, IL--33 and tumor necrosis factor-α, in the pathogenesis of disease. Our review also highlights the significance of several experimental animal models that have an important role in dissecting the mechanistic pathways operating in the development of chronic pancreatitis, including pancreatic fibrosis. Additionally, we provided several intermediary molecules that are involved in major signaling pathways that might provide target molecules for future therapeutic treatment strategies for pancreatic pathogenesis.
基金supported by the National Natural Science Foundation of China(30970165,81102230)Team Project for the Technology Innovation of Higher Education of Hunan Province,China,2010
文摘Infection with Chlamydia trachomatis induces inflammatory pathologies in the urogenital tract that can lead to infertility and ectopic pregnancy. Pathogenesis of infection has been mostly attributed to excessive cytokine production. However, precise mechanisms on how C. trachomatis triggers this production, and which protein(s) stimulate inflammatory cytokines remains unknown. In the present study, the C. trachomatis pORF5 protein induced tumor necrosis factor alpha (TNF-a), interleukin-1 beta (IL-1β) and interleukin-8 (IL-8) in dose and time-dependent manners in the THP-1 human monocyte cell line. We found that intracellular p38/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK)/MAPK signaling pathways were required for the induction of TNF- a, IL-1β and IL-8. Blockade of toll-like receptor 2 (TLR2) signaling reduced induction levels of TNF-a, IL-8 and IL-1β. We concluded that the C. trachomatis pORF5 protein might contribute to the inflammatory processes associated with chlamydial infections.
文摘AIM: To study the relationship between interleukin-lbeta (IL-1β) up-regulating tissue inhibitor of matrix metalloproteinase-1 (TIMMP-1) mRNA expression and phosphorylation of both c-jun N-terminal kinase (INK) and p38 in rat heffatic stellate cells (HSC). METHODS: RT-PCR was performed to measure the expression of TIMMP-1 mRNA in rat HSC. Western blot was performed to measure IL-1β-induced JNK and p38 activities in rat HSC. RESULTS: TIMMP-1 mRNA expression (1.191± 0.079) was much higher after treatment with IL-1β (10 ng/mL) for 24 h than in control group (0.545±0.091) (P〈0.01). IL-1β activated INK and p38 in a time-dependent manner. After stimulation with IL-1β for 0, 5, 15, 30, 60 and 120 min, the INK activity was 0.982±0.299, 1.501±0.720, 2.133±0.882, 3.360±0.452, 2.181±0.789, and 1.385 ± 0.368, respectively. There was a significant difference in JNK activity at 15 min (P〈 0.01), 30 min (P〈 0.01) and 60 min (P〈0.01) in comparison to that at 0 min. The p38 activity was 1.061±0.310, 2.050±0.863, 2.380±0.573, 2.973±0.953, 2.421±0.793, and 1.755 ± 0.433 at the 6 time points (0, 5, 15, 30, 60 and 120 min) respectively. There was a significant difference in p38 activity at 5 min (P〈0.05), 15 min (P〈0.01), 30 min (P〈0.01) and 60 min (P〈0.01) compared to that at 0 min. TIMMP-1 mRNA expression trended to decrease in 3 groups pretreated with different concentrations of SP600125 (10 μmol/L, 1.022±0.113; 20 μmol/L, 0.869±0.070; 40 μmol/L, 0.666±0.123). Their decreases were all significant (P〈0.05, P〈0.01, P〈0.01) in comparison to control group (without SP600125 treatment, 1.163±0.107). In the other 3 groups pretreated with different concentrations of SB203580 (10 μmol/L, 1.507±0.099; 20 μmol/L, 1.698±0.107; 40 μmol/L, 1.857±0.054), the expression of TIMMP-1 mRNA increased. Their levels were higher than those in the control group (without SB203580 treatment, 1.027 ± 0.061) with a si
基金Supported by Italian Association for Cancer Research(AIRC)fellowship(to Grossi V)Italian Foundation for Cancer Research(FIRC)fellowships(to Peserico A and Tezil T)+1 种基金Investigator Grant 2010 No.IG10177 to Simone C from the Italian Association for Cancer Research(AIRC)FIRB"Futuro in Ricerca"RBFR12VP3Q_003(to Simone C)from the Italian MIUR
文摘Colorectal cancer (CRC) remains one of the most common malignancies in the world. Although surgical resection combined with adjuvant therapy is effective at the early stages of the disease, resistance to conventional therapies is frequently observed in advanced stages, where treatments become ineffective. Resistance to cisplatin, irinotecan and 5-fluorouracil chemotherapy has been shown to involve mitogen-activated protein kinase (MAPK) signaling and recent studies identified p38α MAPK as a mediator of resistance to various agents in CRC patients. Studies published in the last decade showed a dual role for the p38α pathway in mammals. Its role as a negative regulator of proliferation has been reported in both normal (including cardiomyocytes, hepatocytes, fibroblasts, hematopoietic and lung cells) and cancer cells (colon, prostate, breast, lung tumor cells). This function is mediated by the negative regulation of cell cycle progression and the transduction of some apoptotic stimuli. However, despite its anti-proliferative and tumor suppressor activity in some tissues, the p38α pathway may also acquire an oncogenic role involving cancer related-processes such as cell metabolism, invasion, inflammation and angiogenesis. In this review, we summarize current knowledge about the predominant role of the p38α MAPK pathway in CRC development and chemoresistance. In our view, this might help establish the therapeutic potential of the targeted manipulation of this pathway in clinical settings.
基金Supported by Technology Foundation of Ministry of Education, China
文摘AIM: To investigate the expression of mitogen-activated protein kinases (MAPKs) and its upstream protein kinase in human gastric cancer and to evaluate the relationship between protein levels and clinicopathological parameters. METHODS: Western blot was used to measure the expression of extracellular signal-regulated kinase (ERK)-1, ERK-2, ERK-3, p38 and mitogen or ERK activated protein kinaseMEK-1 proteins in surgically resected gastric carcinoma, adjacent normal mucosa and metastatic lymph nodes from 42 patients. Immunohistochemistry was employed for their localization. RESULTS: Compared with normal tissues, the protein levels of ERK-1 (integral optical density value 159 526?5 760 vs 122 807±65 515, P= 0.001), ERK-2 (168 471±95 051 vs 120 469±72 874, P<0.001), ERK-3 (118 651±71 513 vs 70 934±68 058,P<0.001), P38 (104 776±51 650 vs 82 930±40 392, P= 0.048) and MEK-1 (116 486±45 725 vs 101 434±49 387, P = 0.027) were increased in gastric cancer tissues. Overexpression of ERK-3 was correlated to TNM staging [average ratio of integral optic density (IOD)tumor: IODnormal in TNM I, II, III, IV tumors was 1.43±0.34, 5.08±3.74, 4.99±1.08, 1.44±1.02, n = 42, P= 0.023] and serosa invasion (4.31±4.34 vs 2.00±2.03, P = 0.037). In poorly differentiated cancers (n = 33), the protein levels of ERK-1 and ERK-2 in stage III and IV tumors were higher than those in stage I and II tumors (2.64+3.01 vs 1.01±0.33, P= 0.022; 2.05±1.54 vs1.24±0.40, P= 0.030). Gastric cancer tissues with either lymph node involvement (2.49±2.91 vs1.03±0.36, P= 0.023; 1.98±1.49vs1.24±0.44, P= 0.036) or serosa invasion (2.39±2.82 vs 1.01±0.35, P= 0.022; 1.95±1.44 vs1.14±0.36, P=0.015) expressed higher protein levels of ERK-1 and ERK-2. In Borrmann II tumors, expression of ERK-2 and ERK-3 was increased compared with Borrmann III tumors (2.57±1.86 vs1.23±0.60, P= 0.022; 5.50±5.05 vs1.83±1.21, P= 0.014). Borrmann IV tumors expressed higher p38 protein levels. No statistically significant difference in expression of MAPKs was fo
基金grants fromthe Chinese Academy of Sciences (No. KJ951-BI608), the National Natural Sciences FOundation ofChina (No. 39625007 and
文摘We reported in this manuscript that TGF-beta1 induces apoptosis in AML12 murine hepatocytes, which is associated with the activation of p38 MAPK signaling pathway. SB202190, a specific inhibitor of p38 MAPK, strongly inhibited the TGF-beta1-induced apoptosis and PAI-1 promoter activity. Treatment of cells with TGF-beta1 activates p38. Furthermore, over-expression of dominant negative mutant p38 also reduced the TGF-beta1-induced apoptosis. The data indicate that the activation of p38 is involved in TGF-beta1-mediated gene expression and apoptosis.
基金supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA02Z341)the Science and Technology Research Program of Zhejiang Province, China (No. 2008C30037)
文摘Objective: To investigate the effects ofursolic acid on the proliferation and apoptosis of human HT-29 colon cancer cells. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays were performed to evaluate the effects of ursolic acid on the growth and apoptosis of HT-29 cells. Western blot analysis was applied to investigate the inhibitory efibcts of ursolic acid on the phosphorylation of the epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), and the activity of B cell leukemia-2 (Bcl-2), B cell leukemia-xL (Bcl-xL), caspase-3, and caspase-9. Results: Ursolic acid inhibited the growth of HT-29 cells in dose- and time-dependent manners. The median inhibition concentration (IC50) values for 24, 48, and 72 h treatment were 26, 20, and 18 pmol/L, respectively. The apoptotic rates of 10, 20, and 40 μmol/L ursolic acid treatments for 24 h were 5.74%, 14.49%, and 33.05%, and for 48 h were 9%, 21.39%, and 40.49%, respectively. Ursolic acid suppressed the phosphorylation of EGFR, ERK1/2, p38 MAPK, and JNK, which is well correlated with its growth inhibitory effect. 10, 20, and 40 μmol/L ursolic acid significantly inhibited the proliferation of EGF-stimulated HT-29 cells (P〈0.05). Cell proliferation was most significantly inhibited when treated with 10 and 20 μmol/L ursolic acid combined with 200 nmol/L AG 1478 or 10 μmol/L U0126 (P〈0.01). Besides, it also down-regulated the expression of Bcl-2 and Bcl-xL and activated caspase-3 and caspase-9. Conclusion: Ursolic acid induces apoptosis in HT-29 cells by suppressing the EGFR/MAPK pathway, suggesting that it may be a potent agent for the treatment of colorectal cancer.
基金Supported by A fellowship from the Daiichi Sankyo Foundation of Life Science,to Nakagawa H
文摘It has been established that cancer can be promoted and exacerbated by inflammation.Hepatocellular carcinoma(HCC) is the fifth most common cancer worldwide,and its long-term prognosis remains poor.Although HCC is a complex and heterogeneous tumor with several genomic mutations,it usually develops in the context of chronic liver damage and inflammation,suggesting that understanding the mechanism(s) of inflammation-mediated hepatocarcinogenesis is essential for the treatment and prevention of HCC.Chronic liver damage induces a persistent cycle of necroinflammation and hepatocyte regeneration,resulting in genetic mutations in hepatocytes and expansion of initiated cells,eventually leading to HCC development.Recently,several inflammation-and stress-related signaling pathways have been identified as key players in these processes,which include the nuclear factor B,signal transducer and activator of transcription,and stress-activated mitogen-activated protein kinase pathways.Although these pathways may suggest potential therapeutic targets,they have a wide range of functions and complex crosstalk occurs among them.This review focuses on recent advances in our understanding of the roles of these signaling pathways in hepatocarcinogenesis.
文摘AIM: To examine the role of p38 during acute experimental cerulein pancreatitis. METHODS: Rats were treated with cerulein with or without a specific JNK inhibitor (CEP1347) and/or a specific p38 inhibitor (SB203580) and pancreatic stress kinase activity was determined. Parameters to assess pancreatitis included trypsin, amylase, lipase, pancreatic weight and histology. RESULTS: JNK inhibition with CEP1347 ameliorated pancreatitis, reducing pancreatic edema. In contrast, p38 inhibition with SB203580 aggravated pancreatitis with higher trypsin levels and, with induction of acinar necrosis not normally found after cerulein hyperstimulation. Simultaneous treatment with both CEP1347 and SB203580 mutually abolished the effects of either compound on cerulein pancreatitis. CONCLUSION: Stress kinases modulate pancreatitis differentially. JNK seems to promote pancreatitis development, possibly by supporting inflammatory reactions such as edema formation while its inhibition ameliorates pancreatitis. In contrast, p38 may help reduce organ destruction while inhibition of p38 during induction of cerulein pancreatitis leads to the occurrence of acinar necrosis.
基金Supported by The Thailand Research Fund through the Royal Golden Jubilee PhD program(grant PHD/0121/2547 code 5LKK/47/B1 to Kosriwong K and Limpaiboon T)Khon Kaen University Research Affairs(grant 48-03-1-01-03)the Centre for Research and Development of Medical Diagnostic Laboratories,Faculty of Associated Medical Sciences(No.06-01), Thailand
文摘AIM:To investigate trefoil factor(TFF) gene copy number,mRNA and protein expression as potential biomarkers in cholangiocarcinoma(CCA).METHODS:TFF mRNA levels,gene copy number and protein expression were determined respectively by quantitative reverse transcription polymerase chain reaction(PCR),quantitative PCR and immunohistochemistry in bile duct epithelium biopsies collected from individuals with CCA,precancerous bile duct dysplasia and from disease-free controls.The functional impact of recombinant human(rh) TFF2 peptide treatment on proliferation and epidermal growth factor receptor(EGFR) /mitogenactivated protein kinase(MAPK) signaling was assessed in the CCA cell line,KMBC,by viable cell counting and immunoblotting,respectively.RESULTS:TFF1,TFF2 and TFF3 mRNA expression was significantly increased in CCA tissue compared to disease-free controls,and was unrelated to gene copy number.TFF1 immunoreactivity was strongly increased in both dysplasia and CCA,whereas TFF2 immunoreactivity was increased only in CCA compared to diseasefree controls.By contrast,TFF3 immunoreactivity was moderately decreased in dysplasia and further decreased in CCA.Kaplan-Meier analysis found no association of TFF mRNA,protein and copy number with age,gender,histological subtype,and patient survival time.Treatment of KMBC cells with rhTFF2 stimulated proliferation,triggered phosphorylation of EGFR and downstream extracellular signal related kinase(ERK),whereas co-incubation with the EGFR tyrosine kinase inhibitor,PD153035,blocked rhTFF2-dependent proliferation and EGFR/ERK responses.CONCLUSION:TFF mRNA/protein expression is indicative of CCA tumor progression,but not predictive for histological sub-type or survival time.TFF2 is mitogenic in CCA via EGFR/MAPK activation.
文摘Shenfu injection(SFI), a Chinese medicinal product, shows potent efficacy in treating sepsis. The aim of the present study was to clarify the protective effects of SFI against lipopolysaccharide(LPS)-induced myocardial inflammation and apoptosis.Experiments were carried out in Sprague-Dawley(SD) rats treated with LPS or LPS + SFI, and in H9 C2 cardiomyocytes. The sepsisassociated myocardial inflammation and apoptosis was induced by the intraperitoneal injection of LPS(20 mg·kg–1). SFI attenuated the increased expression of tumor necrosis factor(TNF)-α and interleukin(IL)-1β induced by LPS both in serum and heart. In LPS group,cell viability was reduced, and reversed after SFI administration. LPS treatment increased the expression levels of cleaved-caspase 3 and Bax, and those of Bcl2 and Bcl2/Bax. These two trends were reversed by SFI administration. The expression levels of phosphorylated mitogen-activated protein kinase kinase(p-MEK) and phosphorylated extracellular regulated protein kinases(p-ERK) were increased by LPS, and reversed by SFI. MEK inhibitor U0126 attenuated the apoptosis induced by LPS. These results indicate that SFI could treat LPS-induced cardiac dysfunction. In conclusion, SFI attenuates the inflammation and apoptosis induced by LPS via downregulating the MEK and ERK signaling pathways.
基金supported by the National Natural Science Foundation of China(Nos.81430072,81421003,81602641,81572929).
文摘Background:Gastric cancer(GC)is one of the most common malignancies worldwide,particularly in China.DNA damage-inducible transcript 4(DDIT4)is a mammalian target of rapamycin inhibitor and is induced by various cellular stresses;however,its critical role in GC remains poorly understood.The present study aimed to investigate the poten-tial relationship and the underlying mechanism between DDIT4 and GC development.Methods:We used western blotting,real-time polymerase chain reaction,and immunohistochemical or immunoflu-orescence to determine DDIT4 expression in GC cells and tissues.High-content screening,cell counting kit-8 assays,colony formation,and in vivo tumorigenesis assays were performed to evaluate cell proliferation.Flow cytometry was used to investigate cell apoptosis and cell cycle distribution.Results:DDIT4 was upregulated in GC cells and tissue.Furthermore,downregulating DDIT4 in GC cells inhibited proliferation both in vitro and in vivo and increased 5-fluorouracil-induced apoptosis and cell cycle arrest.In contrast,ectopic expression of DDIT4 in normal gastric epithelial cells promoted proliferation and attenuated chemosensitivity.Further analysis indicated that the mitogen-activated protein kinase and p53 signaling pathways were involved in the suppression of proliferation,and increased chemosensitivity upon DDIT4 downregulation.Conclusion:DDIT4 promotes GC proliferation and tumorigenesis,providing new insights into the role of DDIT4 in the tumorigenesis of human GC.
基金Supported by National Natural Science Foundation of China, No. 30750013 Key Science Research Project Natural Science Foundation of Xiamen, No. WKZ0501
文摘Reactive oxygen species (ROS) are molecules or ions formed by the incomplete one-electron reduction of oxygen. Ofinterest, it seems that ROS manifest dual roles, cancer promoting or cancer suppressing, in tumorigenesis. ROS participate simultaneously in two signaling pathways that have inverse functions in tumorigenesis, Ras-Raf-MEK1/2-ERK1/2 signaling and the p38 mitogen-activated protein kinases (MAPK) pathway. It is well known that Ras-Raf-MEK1/2-ERK1/2 signaling is related to oncogenesis, while the p38 MAPK pathway contributes to cancer suppression, which involves oncogene-induced senescence, inflammationinduced cellular senescence, replicative senescence, contact inhibition and DNA-damage responses. Thus, ROS may not be an absolute carcinogenic factor or cancer suppressor. The purpose of the present review is to discuss the dual roles of ROS in the pathogenesis of cancer, and the signaling pathway mediating their role in tumorigenesis.
基金Supported by the National Basic Science and Development Programme (973 Programme),No.G1999054204 National Natural Science Foundation of China, No. 30170966, 30230370 National High-Technology Programme (863 Programme), No. 2001AA215131
文摘AIM: To investigate the role of p38 mitogen-activated protein kinase in rat small intestine after ischemia-reperfusion (I/R)insult and the relationship between activation of p38 MAPK and apoptotic cell death of intestine.METHODS: Ninety Wistar rats were divided randomly into three groups, namely sham-operated group (C), I/R vehicle group (R) and SB203580 pre-treated group(S).In groups R and S, the superior mesenteric artery(SMA)was separated and occluded for 45 min, then released for reperfusion for0.25, 0.5, 1, 2, 6, 12 and 24 h. In group C, SMA was separated without occlusion. Plasma D-lactate levels were examined and histological changes were observed under a light microscope. The activity of p38 MAPK was determined by Western immunoblotting and apoptotic cells were detected by the terminal deoxynucleotidyl transferase (TdT)-mediated dUDP-biotin nick end labeling (TUNEL).RESULTS: Intestinal ischemia followed by reperfusion activated p38 MAPK, and the maximal level of activation (7.3-fold vs sham-operated group) was reached 30 min after I/R. Treatment with SB 203580, a p38 MAPK inhibitor,reduced intestinal apoptosis (26.72±3.39% vs62.50±3.08%in I/R vehicle, P<0.01) and decreased plasma D-lactate level (0.78±0.15 mmol/L in I/R vehicle vs0.42±0.17 mmol/L in SB-treated group) and improved post-ischemic intestinal histological damage.CONCLUSION: p38 MAPK plays a crucial role in the signal transduction pathway mediating post-ischemic intestinal apoptosis, and inhibition of p38 MAPK may attenuate ischemia-reperfusion injury.
基金supported by the National Natural Science Foundation of China,No.81350013(to XYY)。
文摘After spinal cord injury, dysregulated miRNAs appear and can participate in inflammatory responses, as well as the inhibition of apoptosis and axon regeneration through multiple pathways. However, the functions of miRNAs in spinal cord ischemia-reperfusion injury progression remain unclear. miRCURY LNATM Arrays were used to analyze miRNA expression profiles of rats after 90 minutes of ischemia followed by reperfusion for 24 and 48 hours. Furthermore, subsequent construction of aberrantly expressed miRNA regulatory patterns involved cell survival, proliferation, and apoptosis. Remarkably, the mitogen-activated protein kinase(MAPK) signaling pathway was the most significantly enriched pathway among 24-and 48-hour groups. Bioinformatics analysis and quantitative reverse transcription polymerase chain reaction confirmed the persistent overexpression of miR-22-3 p in both groups. These results suggest that the aberrant miRNA regulatory network is possibly regulated MAPK signaling and continuously affects the physiological and biochemical status of cells, thus participating in the regulation of spinal cord ischemia-reperfusion injury. As such, miR-22-3 p may play sustained regulatory roles in spinal cord ischemia-reperfusion injury. All experimental procedures were approved by the Animal Ethics Committee of Jilin University, China [approval No. 2020(Research) 01].
基金Supported by Natural Science Foundation of Zhejiang Province(No.Y2081051)Science and Technology Planning Key Project of Zhejiang Province(No.2009ZA003)
文摘OBJECTIVE: To explore the anticancer mechanism of aqueous extract of Taxus Chinensis (Pilger) Rehd (AETC). METHODS: The serum pharmacological method was used to avoid interference from administration of the crude medicinal herbs. Eight purebred NewZealand rabbits were used for preparation of serum containing various concentrations of AETC. For- ty-eight Balb/c-nu mice were used for in vivo experi- ments. The effects of serum containing AETC on the proliferation of A549 cells and expression levels of the epidermal growth factor receptor/mito- gen-activated protein kinase (EGFR/MAPK) path- way-related proteins in vitro were investigated. Ad- ditionally, the effects on the growth of A549 xeno- grafts in nude mice, and expression levels of the EG- FR/MAPK pathway-related proteins in the xeno- grafts, were investigated. RESULTS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium bromide (MTT) assay revealed that the serum containing AETC significantly decreased the viability of A549 cells in a dose-dependent manner. Western blot showed that the serum containing various concentrations of AETC strongly reduced the levels of phospho-Jun N-terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinasel/2 (ERK1/2) while it increased the level of p-p38. However, no significant effects on the ex- pression levels of JNK, ERK1/2, and p38 MAPK were found. In addition, an anticancer effect from AETC was observed in vivo in the Balb/c-nu mice bearing A549 xenografts.CONCLUSION: AETC has significant effects on the growth of A549 xenografts and on the activity of the EGFR/MAPK pathway. Therefore, AETC may be beneficial in lung carcinoma treatment.
基金the National Natural Science Foundation of China,No.39830440
文摘AIM: To isolate a novel isoform of human HPO (HPO-205) from human fetal liver Marathon-ready cDNA and characterize its primary biological function. METHODS: 5'-RACE (rapid amplification of cDNA 5' ends) was used to isolate a novel isoform of hHPO in this paper. The constructed pcDNA(HPO-205), pcDNA(HPO) and pcDNA eukaryotic expression vectors were respectively transfected by lipofectamine method and the stimulation of DNA synthesis was observed by (3)H-TdR incorporation assay. Proteins extracted from different cells were analyzed by Western blot. RESULTS: A novel isoform of hHPO (HPO-205) encoding a 205 amino acid ORF corresponding to a translated production of 23 kDa was isolated and distinguished from the previous HPO that lacked the N-terminal 80 amino acids. The dose-dependent stimulation of DNA synthesis of HepG2 hepatoma cells by HPO-205 demonstrated its similar biological activity with HPO in vitro. The level of MAPK (Mitogen-activated protein kinase) phosphorylation by Western blot analysis revealed that HPO-205 might have the stronger activity of stimulating hepatic cell proliferation than that of HPO. CONCLUSION: A novel isoform of hHPO (HPO-205) was isolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure and function of hHPO, and provide the new way of thinking to deeply elucidate the biological roles of HPO/ALR.
基金supported by grants from the National Natural Science Foundation of China (Grants 22177083,81922064,81874290,and 81803755)Sichuan Science and Technology Program (Grant No.2020JDRC0053,China)+1 种基金Fundamental Research Funds for the Central Universities (Grant No.2682020CX56,China)National Clinical Research Center for Geriatrics,West China Hospital,Sichuan University (Grant Z20201004,China)。
文摘The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.