期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
琼东南盆地新近纪构造沉降特征对BSR分布的影响 被引量:5
1
作者 李胜利 沙志彬 +4 位作者 于兴河 丛晓荣 姜龙燕 王建忠 方竞男 《中国地质》 CAS CSCD 北大核心 2013年第1期163-175,共13页
琼东南盆地陆坡深水区晚中新世以来的地层中有比较明显的BSR(似海底反射)分布。由于BSR是识别天然气水合物存在与否的重要地球物理参考标志,而构造变动是影响其分布的重要因素之一。本文结合南海发生的构造运动以及全球和莺—琼盆地海... 琼东南盆地陆坡深水区晚中新世以来的地层中有比较明显的BSR(似海底反射)分布。由于BSR是识别天然气水合物存在与否的重要地球物理参考标志,而构造变动是影响其分布的重要因素之一。本文结合南海发生的构造运动以及全球和莺—琼盆地海平面相对变化,以11.6 Ma,5.3 Ma和1.8 Ma 3个时间点为界,将琼东南深水区晚中新世以来的地层划分为3个层,自下而上分别为层序Ⅲ、层序Ⅱ、层序Ⅰ。通过对工区二维地震资料301个虚拟点进行盆地模拟,结果表明,3个层序存在构造沉降加速的过程。其中层序Ⅲ构造沉降速率变化相对最为缓慢,层序Ⅱ构造沉降速率整体增大,同时其变化加剧;层序Ⅰ构造沉降速率变化剧烈,最高沉降速率增至170 m/Ma。但是5.3 Ma以来的构造沉降加速在时空上存在东西的差异。空间上构造沉降速率呈周边向中心地带递增的规律。研究区BSR主要分布在各凹陷与凸起次级构造单元相接、构造沉降速率在70~110 m/Ma且变化迅速的区域。 展开更多
关键词 琼东南盆地深水区 BSR分布 构造沉降速率 中新世-全新世 定量模拟
下载PDF
Tectonic Related Lithium Deposits Another Major Region Found North East Tanzania—A New Area with Close Association to the Dominant Areas: The Fourth of Four
2
作者 Lawrence Stephenson 《Natural Resources》 2023年第9期161-191,共31页
The current “mega” interest in Lithium resources was spurred by the development of Lithium-Ion batteries to aid in restructuring the world’s reliance on carbon spewing power petroleum reserves. Current resources of... The current “mega” interest in Lithium resources was spurred by the development of Lithium-Ion batteries to aid in restructuring the world’s reliance on carbon spewing power petroleum reserves. Current resources of lithium recovery have fallen into two main categories—Pegmatite, found worldwide associated with felsic intrusions and Brine Related, and now with development in the Southwest United States of America (SWUS), a third category— Tertiary Volcanic clays, are specifically associated with Tertiary volcanics and major Tectonic Plate interactions. “Active” Plate tectonics is important as both the SWUS, the Lithium Triangle of South America (LTSA) and the Tibetan Plateau of China (TPC) producing tertiary (Miocene) volcanism that is important to the development of Lithium resources. The Tanzanian part of the East Africa Rift System (EARS) has features of both the SWUS, tertiary volcanic related “playas” and Continental rifting, the LTSA, tertiary volcanic related “Brines” and a major Tectonic plate event (subduction of an Oceanic Plate beneath the Continental South American Plate) and the TPC, tertiary volcanics (?) and major tectonic plate event (subduction of the Indian Continental Plate under the Eurasian Continental Plate). As well as the association of peralkaline and metaluminous felsic volcanics with Lithium playas of the SWUS and the EARS (Tanzania) “playas”. These similarities led to an analysis of a volcanic rock in Northeast Tanzania. When it returned 1.76% Lithium, a one-kilometer spaced soil sampling program returned, in consecutive samples over 0.20% Lithium (several samples over 1.0% lithium and a high of 2.24% lithium). It is proposed that these four regions with very similar past and present geologic characteristics, occur nowhere else in the world. That three of them have produced Lithium operations and two of them have identified resources of Lithium clay and “highly” anomalous Lithium clays should be regarded as more than “coincidental”. 展开更多
关键词 Lithium Triangle of South America Southwest United States Tibetan Plateau of China East Africa Rift System Tectonic Continental Oceanic Plate Subduction Tertiary (miocene - holocene) Volcanics Continental Rifting
下载PDF
Automatic Data Reduction and Quantification of X-Ray Computed Tomography Images of Sedimentary Cores: Method and Illustration
3
作者 Philippe Gaillot Mathieu J. Duchesne Peter Blum 《Open Journal of Geology》 2020年第8期874-899,共26页
This paper presents a procedure from which information contained in 3-Dimensional single energy X-ray computed tomography (XR-CT) images of sedimentary rocks is converted into sub-mm scale resolution core scalar and c... This paper presents a procedure from which information contained in 3-Dimensional single energy X-ray computed tomography (XR-CT) images of sedimentary rocks is converted into sub-mm scale resolution core scalar and core image logs. This new data provide a quantitative and compact (data volume reduction of ~90%) description of the XR-CT images. Density-related outputs are calibrated through automatic integration with continuous digital visual core description (VCD) and discrete moisture and density (MAD) property index measurements of selected samples. After lithology-based calibration of the X-ray attenuation coefficients into density values, quantitative displays include: 1) histogram of the distribution of density values and its related statistical parameters, 2) radial and angular distributions of core density values, 3) volume, average density and mass contributions of three core fractions defined by density thresholds corresponding to voids or vugs (VV, density ≤ ~1 g<span style="white-space:nowrap;">&bull;</span>cm<sup><span style="white-space:nowrap;"><span style="white-space:nowrap;">&minus;</span></span>3</sup>), and a break in the histogram of distribution of the density values showing the limit between the damaged (DM) and non-damaged (ND) fractions of the core material, and so, 4) providing a sub-mm scale bulk density core log free of any drilling disturbance. The procedure is illustrated on data from the 365 m deep Hole C9001C drilled off-shore Shimokita (northeast coast of Honshu, Japan). Usage of the outputs include: 1) derivation of sub-mm scale porosity core log, 2) correction of volume sensitive measurements in case of poor core quality and partially filled core liner, and 3) seismic modeling and well ties. 展开更多
关键词 Core image Multi-Sensor Core Logger Ocean Drilling Shimokita (Japan) Diatomaceous Silty Clays Upper miocene to holocene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部