期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
NeoMinkowskian Cosmological Black Hole, Poincaré’s Gravific Electron and Density of CBR
1
作者 Yves Pierseaux 《Journal of Modern Physics》 2020年第2期237-280,共44页
In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-b... In the previous paper (JMP 2014) we showed that there exists a NeoMinkowskian Gravitational Expanding Solution of GR (General Relativity) with CC (Cosmological Constant). We prove now that NeoMinkowskian Vacuum (non-baryonic Fluid), with gravitational (first) density (dark energy) and gravitational waves (at light speed), corresponds to the Gravitation Field of a Cosmological Black Hole (CBH). The latter predicts furthermore a basic emission of Radiation (CBR) from Hubble spherical singular Horizon to the inside of CBH (unlike Hawking’s emission) at an initial singular time. Our solution is then compatible with a well-tempered Big Bang and Expanding Universe (Escher’s Figure, see Penrose, 3) but incompatible with inflation. The latter is based on Hypothesis of a so-called Planck’s particle (Lemaitre’s primitive atom) characterized by a so-called Planck length. We prove that we can short-circuit this unstable particle with a stable cosmological Poincaré’s electron with gravific pressure. It is well known that electron is a stranger in usual Minkowskian vacuum (dixit Einstein). The stranger electron can be perfectly integrated in NeoMinkowskian Radiation fluid and then also (with its mass, charge and wavelength) in (second density of) CBR. Everything happens as if the leptonic mass of the electron were induced by our cosmological field. The unexpected cosmological model proposed here is the only one that predicts numerical values of (second) density and temperature of CBR very close to the observed (COBE) values. 展开更多
关键词 COSMOLOGICAL Constant General Relativity minkowskian metric Cosmolog-ical Black Hole Tachyons Hyperbolic Horizon DENSITY of Vacuum DENSITY of CBR Poincaré’s Gravitational Waves Poincaré’s ELECTRON DE Broglie’s Wave Electrodynamics DE Broglie’s Subquantum Substratum
下载PDF
具有标量旗曲率的闵可夫斯基积芬斯勒度量 被引量:1
2
作者 田畅 何勇 +1 位作者 李淑雯 张辉 《新疆师范大学学报(自然科学版)》 2022年第3期55-63,共9页
设(M_(1),F_(1))和(M_(2),F_(2))是两个芬斯勒流形,闵可夫斯基积芬斯勒度量是乘积流形M=M_(1)×M_(2)上赋予的芬斯勒度量F=√f(S,T),其中S=F^(2)_(1),T=F^(2)_(2),且f是积函数。文章推导出F的黎曼曲率系数和旗曲率公式;若F_(1)和F_... 设(M_(1),F_(1))和(M_(2),F_(2))是两个芬斯勒流形,闵可夫斯基积芬斯勒度量是乘积流形M=M_(1)×M_(2)上赋予的芬斯勒度量F=√f(S,T),其中S=F^(2)_(1),T=F^(2)_(2),且f是积函数。文章推导出F的黎曼曲率系数和旗曲率公式;若F_(1)和F_(2)的旗曲率均消失,得到了F的旗曲率消失的充要条件;当F_(1)和F_(2)具有标量旗曲率时,给出了F仍具有标量旗曲率的微分方程刻画。 展开更多
关键词 闵可夫斯基积 芬斯勒度量 旗曲率 标量旗曲率
下载PDF
扭积芬斯勒流形的某些曲率性质
3
作者 冯娅璐 张晓玲 《新疆大学学报(自然科学版)(中英文)》 CAS 2023年第1期43-48,共6页
基于共形平坦定义和已知结论,利用偏微分方程理论完全刻画了扭积芬斯勒度量分别是Berwald度量或局部闵可夫斯基度量的等价条件,并构造了两类非黎曼且共形于局部闵可夫斯基扭积芬斯勒度量的新的芬斯勒度量的例子.
关键词 扭积芬斯勒度量 Berwald度量 局部闵可夫斯基度量 共形平坦
下载PDF
对偶平坦和共形平坦的(α,β)-度量(英文) 被引量:3
4
作者 程新跃 张婷 袁敏高 《数学杂志》 CSCD 北大核心 2014年第3期417-422,共6页
本文主要研究了对偶平坦和共形平坦的(α,β)-度量.利用对偶平坦和共形平坦与其测地线的关系,得到了局部对偶平坦和共形平坦的Randers度量是Minkowskian度量的结论.进一步,推广到非Randers型的情形,我们证明了局部对偶平坦和共形平坦的... 本文主要研究了对偶平坦和共形平坦的(α,β)-度量.利用对偶平坦和共形平坦与其测地线的关系,得到了局部对偶平坦和共形平坦的Randers度量是Minkowskian度量的结论.进一步,推广到非Randers型的情形,我们证明了局部对偶平坦和共形平坦的非Randers型的(α,β)-度量在附加的条件下一定是Minkowskian度量. 展开更多
关键词 β)度量 对偶平坦的Finsler度量 共形平坦的Finsler度量 minkowskian度量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部