In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for ma...In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.展开更多
In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error mi...In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error minimized extreme learning machine (EM-ELM) is proposed. EM-ELM has good generalization ability. But many useless neurons in EM-ELM have little influences on the final network output, and reduce the efficiency of the algorithm. Based on the EM-ELM, an improved ABC algorithm is introduced to optimize the parameters of the hidden layer nodes, decrease the number of useless neurons. Network complexity is reduced. The efficiency of the algorithm is improved. The stability and convergence property of the proposed prediction method are proved. The proposed prediction method is used in the prediction of network traffic. In the simulation, the actual collected network traffic is used as the research object. Compared with other prediction methods, the simulation results show that the proposed prediction method reduces the training time of the prediction model, decreases the number of hidden layer nodes. The proposed prediction method has higher prediction accuracy and reliable performance. At the same time, the performance indicators are improved.展开更多
Graphene-like, ternary system B-C-N atomic layer materials promise highly tunable electronic properties and a plethora of potential applications. However, thus far, experimental synthesis of the B-C-N atomic layers no...Graphene-like, ternary system B-C-N atomic layer materials promise highly tunable electronic properties and a plethora of potential applications. However, thus far, experimental synthesis of the B-C-N atomic layers normally yields a microscopic phase-segregated structure consisting of pure C and BN domains. Further, growing the truly ternary B-C-N phase layers with homogenous atomic arrangements has proven to be very challenging. Here, in designing a better- controlled process for the chemical vapor deposition (CVD) growth of B-C-N atomic layer films with the minimized C and BN phase segregation, we selected trimethyl borane (TMB), a gaseous organoboron compound with pre-existing B--C bonds, as the molecular precursor to react with ammonia (NH3) gas that serves as the nitrification agent. The use of this unique B-C delivery precursor allows for the successful synthesis of high-quality and large-area B-C-N atomic layer films. Moreover, the TMB/NH3 reactant combination can offer a high level of tunability and control of the overall chemical composition of B-C-N atomic layers by regulating the relative partial pressure of two gaseous reactants. Electrical transport measurements show that a finite energy gap can be opened in the as-grown B-C-N atomic layers and its tunability is essentially dependent on the relative C to BN atomic compositions. On the basis of carefully controlled experiments, we show that the pre-existing B-C bonds in the TMB molecular precursor have played a crucial role in effectively reducing the C and BN phase segregation problem, thereby facilitating the formation of truly ternary B-C-N phase atomic layers.展开更多
A novel Ga N-based vertical heterostructure field effect transistor(HFET) with nonuniform doping superjunctions(non-SJ HFET) is proposed and studied by Silvaco-ATLAS,for minimizing the specific on-resistance(RonA...A novel Ga N-based vertical heterostructure field effect transistor(HFET) with nonuniform doping superjunctions(non-SJ HFET) is proposed and studied by Silvaco-ATLAS,for minimizing the specific on-resistance(RonA) at no expense of breakdown voltage(BV).The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars,which is different from that of the conventional Ga N-based vertical HFET with uniform doping superjunctions(un-SJ HFET).A physically intrinsic mechanism for the nonuniform doping superjunction(non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail.The design,related to the structure parameters of non-SJ,is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET.Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ.The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V.These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the Ga N-based vertical HFETs.展开更多
With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon pbotonics is a promising technology due to its small fo...With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon pbotonics is a promising technology due to its small footprint, cost competitiveness, and high bandwidth density. In this paper, we demonstrate a 12 × 12 silicon wavelength routing switch employing cascaded arrayed waveguide interconnection network on a the switch's footprint. We single chip. We optimize develop an algorithm based gratings (AWGs) connected by a silicon waveguide the connecting strategy of the crossing structure to reduce on minimum standard deviation to minimize the port-to- port insertion loss (IL) fluctuation of the switch globally. The simulated port-to-port IL fluctuation decreases by about 3 dB compared with that of the conventional one. The average measured port-to-port IL is 13.03 dB, with a standard deviation of 0.78 dB and a fluctuation of 2.39 dB. The device can be used for wide applications in core networks and data centers.展开更多
In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average varianc...In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.展开更多
This study is concerned with a new,explicit approach by means of which forms of the large strain elastic potential for multiaxial rubberlike elasticity may be obtained based on data for a single deformation mode.As a ...This study is concerned with a new,explicit approach by means of which forms of the large strain elastic potential for multiaxial rubberlike elasticity may be obtained based on data for a single deformation mode.As a departure from usual studies,here for the first time errors may be estimated and rendered minimal for all possible deformation modes and,furthermore,failure behavior may be incorporated.Numerical examples presented are in accurate agreement with Treloar's well-known data.展开更多
Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Op...Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.展开更多
Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the produc...Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the production of desired products from low-cost substrates.Here,a cell-free synthetic biosystem containing minimized number of reactions was designed for the conversion of D-glucose to L-lactate via pyruvate.This NADH-balanced biosystem was comprised of only 5 thermophilic enzymes without ATP supplementation.After optimization of enzyme loading amounts,buffer concentration and cofactor concentration,D-glucose was converted to L-lactate with a product yield of∼90%.Our study has provided an emerging platform with potentials in producing pyruvatederived chemicals,and may promote the development of cell-free synthetic enzymatic biosystems for biomanufacturing.展开更多
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c...Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.展开更多
文摘In early 2018,the Boliden Garpenberg operation implemented an optimized control strategy as an addition to the existing ventilation on demand system.The purpose of the strategy is to further minimize energy use for main and booster fans,whilst also fulfilling airflow setpoints without violating constraints such as min/max differential pressure over fans and interaction of air between areas in mines.Using air flow measurements and a dynamical model of the ventilation system,a mine-wide coordination control of fans can be carried out.The numerical model is data driven and derived from historical operational data or step changes experiments.This makes both initial deployment and lifetime model maintenance,as the mine evolves,a comparably easy operation.The control has been proven to operate in a stable manner over long periods without having to re-calibrate the model.Results prove a 40%decrease in energy use for the fans involved and a greater controllability of air flow.Moreover,a 15%decrease of the total air flow into the mine will give additional proportional heating savings during winter periods.All in all,the multivariable controller shows a correlation between production in the mine and the ventilation system performance superior to all of its predecessors.
基金supported by the Science Research Project of Liaoning Education Department (LGD2016009)the Natural Science Foundation of Liaoning Province of China (20170540686)the State Key Program of Basic Research of China (2016YFD0700104-02)
文摘In order to overcome the poor generalization ability and low accuracy of traditional network traffic prediction methods, a prediction method based on improved artificial bee colony (ABC) algorithm optimized error minimized extreme learning machine (EM-ELM) is proposed. EM-ELM has good generalization ability. But many useless neurons in EM-ELM have little influences on the final network output, and reduce the efficiency of the algorithm. Based on the EM-ELM, an improved ABC algorithm is introduced to optimize the parameters of the hidden layer nodes, decrease the number of useless neurons. Network complexity is reduced. The efficiency of the algorithm is improved. The stability and convergence property of the proposed prediction method are proved. The proposed prediction method is used in the prediction of network traffic. In the simulation, the actual collected network traffic is used as the research object. Compared with other prediction methods, the simulation results show that the proposed prediction method reduces the training time of the prediction model, decreases the number of hidden layer nodes. The proposed prediction method has higher prediction accuracy and reliable performance. At the same time, the performance indicators are improved.
基金Acknowledgements We acknowledge financial support from the National Natural Science Foundation of China (Nos. 21322304 and 51472267) and the National Basic Research Program of China (Nos. 2012CB933003 and 2013CB932603) and the Strategic Priority Research Program B of the Chinese Academy of Sciences (No. XDB07030100) of China.
文摘Graphene-like, ternary system B-C-N atomic layer materials promise highly tunable electronic properties and a plethora of potential applications. However, thus far, experimental synthesis of the B-C-N atomic layers normally yields a microscopic phase-segregated structure consisting of pure C and BN domains. Further, growing the truly ternary B-C-N phase layers with homogenous atomic arrangements has proven to be very challenging. Here, in designing a better- controlled process for the chemical vapor deposition (CVD) growth of B-C-N atomic layer films with the minimized C and BN phase segregation, we selected trimethyl borane (TMB), a gaseous organoboron compound with pre-existing B--C bonds, as the molecular precursor to react with ammonia (NH3) gas that serves as the nitrification agent. The use of this unique B-C delivery precursor allows for the successful synthesis of high-quality and large-area B-C-N atomic layer films. Moreover, the TMB/NH3 reactant combination can offer a high level of tunability and control of the overall chemical composition of B-C-N atomic layers by regulating the relative partial pressure of two gaseous reactants. Electrical transport measurements show that a finite energy gap can be opened in the as-grown B-C-N atomic layers and its tunability is essentially dependent on the relative C to BN atomic compositions. On the basis of carefully controlled experiments, we show that the pre-existing B-C bonds in the TMB molecular precursor have played a crucial role in effectively reducing the C and BN phase segregation problem, thereby facilitating the formation of truly ternary B-C-N phase atomic layers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574112,61334002,61474091,and 61574110)the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.605119425012)
文摘A novel Ga N-based vertical heterostructure field effect transistor(HFET) with nonuniform doping superjunctions(non-SJ HFET) is proposed and studied by Silvaco-ATLAS,for minimizing the specific on-resistance(RonA) at no expense of breakdown voltage(BV).The feature of non-SJ HFET lies in the nonuniform doping concentration from top to bottom in the n-and p-pillars,which is different from that of the conventional Ga N-based vertical HFET with uniform doping superjunctions(un-SJ HFET).A physically intrinsic mechanism for the nonuniform doping superjunction(non-SJ) to further reduce RonA at no expense of BV is investigated and revealed in detail.The design,related to the structure parameters of non-SJ,is optimized to minimize the RonA on the basis of the same BV as that of un-SJ HFET.Optimized simulation results show that the reduction in RonA depends on the doping concentrations and thickness values of the light and heavy doping parts in non-SJ.The maximum reduction of more than 51% in RonA could be achieved with a BV of 1890 V.These results could demonstrate the superiority of non-SJ HFET in minimizing RonA and provide a useful reference for further developing the Ga N-based vertical HFETs.
基金National Natural Science Foundation of China(NSFC)(61775069,61635004)National High Technology Research and Development Program of China,863 Program(2015AA015504)
文摘With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon pbotonics is a promising technology due to its small footprint, cost competitiveness, and high bandwidth density. In this paper, we demonstrate a 12 × 12 silicon wavelength routing switch employing cascaded arrayed waveguide interconnection network on a the switch's footprint. We single chip. We optimize develop an algorithm based gratings (AWGs) connected by a silicon waveguide the connecting strategy of the crossing structure to reduce on minimum standard deviation to minimize the port-to- port insertion loss (IL) fluctuation of the switch globally. The simulated port-to-port IL fluctuation decreases by about 3 dB compared with that of the conventional one. The average measured port-to-port IL is 13.03 dB, with a standard deviation of 0.78 dB and a fluctuation of 2.39 dB. The device can be used for wide applications in core networks and data centers.
文摘In this article, we study the variable selection of partially linear single-index model(PLSIM). Based on the minimized average variance estimation, the variable selection of PLSIM is done by minimizing average variance with adaptive l1 penalty. Implementation algorithm is given. Under some regular conditions, we demonstrate the oracle properties of aLASSO procedure for PLSIM. Simulations are used to investigate the effectiveness of the proposed method for variable selection of PLSIM.
基金the support of the start-up fund from the Education Committee of China through Shanghai University(Grant S.15-B002-09-032)the fund for research innovation from Shanghai University(Grants S.10-0401-12-001)the fund from Natural Science Foundation of China(Grants 11372172,11472164)
文摘This study is concerned with a new,explicit approach by means of which forms of the large strain elastic potential for multiaxial rubberlike elasticity may be obtained based on data for a single deformation mode.As a departure from usual studies,here for the first time errors may be estimated and rendered minimal for all possible deformation modes and,furthermore,failure behavior may be incorporated.Numerical examples presented are in accurate agreement with Treloar's well-known data.
文摘Along with the increasing importance of sustainable energy, the optimization of load assignment to boilers in an industrial boiler plant becomes one of the major projects for the optimal operation of boiler plants. Optimal load assignment for power systems has been a long-lasting subject, while it is quite new for industrial boiler plants. The existing methods of optimal load assignment for boiler plants are explained and analyzed briefly in the paper. They all need the fuel cost curves of boilers. Thanks to some special features of the curves for industrial boilers, a new model referred to as minimized departure model (MDM) of optimization of load assignment for boiler plants is developed and proposed in the paper. It merely relies upon the accessible data of two typical working conditions to build the model, viz. the working conditions with the highest efficiency of a boiler and with no-load. Explanation of the algorithm of computer program is given, and effort is made so as to determine in advance how many and which boilers are going to work. Comparison between the results using MDM and the results reported in references is carried out, which proves that MDM is preferable and practicable.
基金the Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-ZS-2016-3)National Natural Science Foundation of China(Grant No.31600636).
文摘Cell-free synthetic enzymatic biosystem is emerging to expand the traditional biotechnological mode by utilizing a number of purified/partially purified enzymes and coenzymes in a single reaction vessel for the production of desired products from low-cost substrates.Here,a cell-free synthetic biosystem containing minimized number of reactions was designed for the conversion of D-glucose to L-lactate via pyruvate.This NADH-balanced biosystem was comprised of only 5 thermophilic enzymes without ATP supplementation.After optimization of enzyme loading amounts,buffer concentration and cofactor concentration,D-glucose was converted to L-lactate with a product yield of∼90%.Our study has provided an emerging platform with potentials in producing pyruvatederived chemicals,and may promote the development of cell-free synthetic enzymatic biosystems for biomanufacturing.
基金support by the National Natural Science Foundation of China(51802269,21773138)Fundamental Research Funds for the Central Universities(XDJK2019AA002)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018027)the innovation platform for academicians of Hainan province.
文摘Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.