期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
NONMONOTONE LOCAL MINIMAX METHODS FOR FINDING MULTIPLE SADDLE POINTS
1
作者 Wei Liu Ziqing Xie Wenfan Yi 《Journal of Computational Mathematics》 SCIE CSCD 2024年第3期851-884,共34页
In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to... In this paper,by designing a normalized nonmonotone search strategy with the BarzilaiBorwein-type step-size,a novel local minimax method(LMM),which is a globally convergent iterative method,is proposed and analyzed to find multiple(unstable)saddle points of nonconvex functionals in Hilbert spaces.Compared to traditional LMMs with monotone search strategies,this approach,which does not require strict decrease of the objective functional value at each iterative step,is observed to converge faster with less computations.Firstly,based on a normalized iterative scheme coupled with a local peak selection that pulls the iterative point back onto the solution submanifold,by generalizing the Zhang-Hager(ZH)search strategy in the optimization theory to the LMM framework,a kind of normalized ZH-type nonmonotone step-size search strategy is introduced,and then a novel nonmonotone LMM is constructed.Its feasibility and global convergence results are rigorously carried out under the relaxation of the monotonicity for the functional at the iterative sequences.Secondly,in order to speed up the convergence of the nonmonotone LMM,a globally convergent Barzilai-Borwein-type LMM(GBBLMM)is presented by explicitly constructing the Barzilai-Borwein-type step-size as a trial step-size of the normalized ZH-type nonmonotone step-size search strategy in each iteration.Finally,the GBBLMM algorithm is implemented to find multiple unstable solutions of two classes of semilinear elliptic boundary value problems with variational structures:one is the semilinear elliptic equations with the homogeneous Dirichlet boundary condition and another is the linear elliptic equations with semilinear Neumann boundary conditions.Extensive numerical results indicate that our approach is very effective and speeds up the LMMs significantly. 展开更多
关键词 Multiple saddle points Local minimax method Barzilai-Borwein gradient method Normalized nonmonotone search strategy Global convergence
原文传递
Normalized Wolfe-Powell-type local minimax method for finding multiple unstable solutions of nonlinear elliptic PDEs 被引量:1
2
作者 Wei Liu Ziqing Xie Wenfan Yi 《Science China Mathematics》 SCIE CSCD 2023年第10期2361-2384,共24页
The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The stee... The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions. 展开更多
关键词 semilinear elliptic PDE multiple unstable solution local minimax method normalized strong Wolfe-Powell-type search rule conjugate-gradient-type descent direction general descent direction global convergence
原文传递
Prediction Distortion in Monte Carlo Tree Search and an Improved Algorithm
3
作者 William Li 《Journal of Intelligent Learning Systems and Applications》 2018年第2期46-79,共34页
Teaching computer programs to play games through machine learning has been an important way to achieve better artificial intelligence (AI) in a variety of real-world applications. Monte Carlo Tree Search (MCTS) is one... Teaching computer programs to play games through machine learning has been an important way to achieve better artificial intelligence (AI) in a variety of real-world applications. Monte Carlo Tree Search (MCTS) is one of the key AI techniques developed recently that enabled AlphaGo to defeat a legendary professional Go player. What makes MCTS particularly attractive is that it only understands the basic rules of the game and does not rely on expert-level knowledge. Researchers thus expect that MCTS can be applied to other complex AI problems where domain-specific expert-level knowledge is not yet available. So far there are very few analytic studies in the literature. In this paper, our goal is to develop analytic studies of MCTS to build a more fundamental understanding of the algorithms and their applicability in complex AI problems. We start with a simple version of MCTS, called random playout search (RPS), to play Tic-Tac-Toe, and find that RPS may fail to discover the correct moves even in a very simple game position of Tic-Tac-Toe. Both the probability analysis and simulation have confirmed our discovery. We continue our studies with the full version of MCTS to play Gomoku and find that while MCTS has shown great success in playing more sophisticated games like Go, it is not effective to address the problem of sudden death/win. The main reason that MCTS often fails to detect sudden death/win lies in the random playout search nature of MCTS, which leads to prediction distortion. Therefore, although MCTS in theory converges to the optimal minimax search, with real world computational resource constraints, MCTS has to rely on RPS as an important step in its search process, therefore suffering from the same fundamental prediction distortion problem as RPS does. By examining the detailed statistics of the scores in MCTS, we investigate a variety of scenarios where MCTS fails to detect sudden death/win. Finally, we propose an improved MCTS algorithm by incorporating minimax search to overcome prediction distortio 展开更多
关键词 MONTE Carlo Tree search minimax search BOARD GAMES Artificial
下载PDF
黑白棋博弈系统设计
4
作者 刘佳瑶 林涛 《智能计算机与应用》 2020年第5期176-179,182,共5页
博弈相关算法快速进步,黑白棋博弈系统的设计利用这些算法取得了显著的成就。设计黑白棋博弈系统,研究和使用了Minimax搜索算法,利用Alpha-Beta剪枝算法对博弈系统进行了优化,使系统反应速度更快。该系统使用Scala语言实现,代码简洁高效... 博弈相关算法快速进步,黑白棋博弈系统的设计利用这些算法取得了显著的成就。设计黑白棋博弈系统,研究和使用了Minimax搜索算法,利用Alpha-Beta剪枝算法对博弈系统进行了优化,使系统反应速度更快。该系统使用Scala语言实现,代码简洁高效,基于Eclipse环境编写。利用上述算法进行程序设计,完成了计算机方的走棋策略,有一定的算法优化,达到了一定的水平。同时该系统完成了基本的人机对弈,可以对弈初级的黑白棋玩家。 展开更多
关键词 黑白棋博弈 minimax搜索算法 Scala语言 Alpha-Beta剪枝算法
下载PDF
非线性极大极小问题的混沌万有引力搜索算法求解 被引量:27
5
作者 刘勇 马良 《计算机应用研究》 CSCD 北大核心 2012年第1期47-48,56,共3页
针对非线性极大极小问题目标函数不可微的特点,提出了一种混沌万有引力搜索算法的求解方法。该算法采用基于万有引力定律的优化机制引导群体进行全局探索,并基于混沌运动的随机性、遍历性和规律性特点,利用混沌优化对当前最优位置进行... 针对非线性极大极小问题目标函数不可微的特点,提出了一种混沌万有引力搜索算法的求解方法。该算法采用基于万有引力定律的优化机制引导群体进行全局探索,并基于混沌运动的随机性、遍历性和规律性特点,利用混沌优化对当前最优位置进行精细搜索,有效抑制算法早熟收敛现象,提高优化性能。数值实验结果表明,该算法具有计算精度高、数值稳定性好等特点。 展开更多
关键词 极大极小问题 万有引力搜索算法 混沌 优化
下载PDF
智能搜索算法设计和分析 被引量:1
6
作者 孙伟 马绍汉 《山东大学学报(自然科学版)》 CSCD 1994年第2期162-172,共11页
提出了人工智能博弈树搜索SSS*算法的两种改进算法BS*和DS*算法,给出了BS*和DS*搜索博弈树端结点的充分必要条件,由此证明了,如果能估计一个合适的上界,则BS*算法优于SSS*算法.同时还证明了DS*算法优于... 提出了人工智能博弈树搜索SSS*算法的两种改进算法BS*和DS*算法,给出了BS*和DS*搜索博弈树端结点的充分必要条件,由此证明了,如果能估计一个合适的上界,则BS*算法优于SSS*算法.同时还证明了DS*算法优于α-β算法.论述了DS*算法搜索深度为奇数的博弈树时,在一般情况下也优于SSS*算法,且这两种算法都降低了存储开销. 展开更多
关键词 博弈树 与或树 人工智能 搜索算法
原文传递
A Nonmonotone Line Search Based Algorithm for Distribution Center Location Selected
7
作者 Zhu-cui JING Meng-gang LI Chuan-long WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第3期699-706,共8页
The minimax optimization model introduced in this paper is an important model which has received some attention over the past years. In this paper, the application of minimax model on how to select the distribution ce... The minimax optimization model introduced in this paper is an important model which has received some attention over the past years. In this paper, the application of minimax model on how to select the distribution center location is first introduced. Then a new algorithm with nonmonotone line search to solve the non-decomposable minimax optimization is proposed. We prove that the new algorithm is global Convergent. Numerical results show the proposed algorithm is effective. 展开更多
关键词 non-decomposable minimax nonmonotone line search global convergence
原文传递
Parallel Minimax Searching Algorithm for Extremum of Unimodal Unbounded Function
8
作者 Boris S. Verkhovsky 《International Journal of Communications, Network and System Sciences》 2011年第9期549-561,共13页
In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting.... In this paper we consider a parallel algorithm that detects the maximizer of unimodal function f(x) computable at every point on unbounded interval (0, ∞). The algorithm consists of two modes: scanning and detecting. Search diagrams are introduced as a way to describe parallel searching algorithms on unbounded intervals. Dynamic programming equations, combined with a series of liner programming problems, describe relations between results for every pair of successive evaluations of function f in parallel. Properties of optimal search strategies are derived from these equations. The worst-case complexity analysis shows that, if the maximizer is located on a priori unknown interval (n-1], then it can be detected after cp(n)=「2log「p/2」+1(n+1)」-1 parallel evaluations of f(x), where p is the number of processors. 展开更多
关键词 Adversarial minimax Analysis DESIGN Parameters Dynamic Programming FUNCTION Evaluation Optimal ALGORITHM PARALLEL ALGORITHM System DESIGN Statistical Experiments Time Complexity Unbounded search UNIMODAL FUNCTION
下载PDF
极大熵方法与二次规划子问题的显式解
9
作者 岑利群 施保昌 《应用数学》 CSCD 2000年第2期123-127,共5页
本文对混合约束极大极小问题的目标函数与约束分别用熵函数来逼近 ,讨论了逼近问题的二次规划子问题的搜索方向的显式形式 ,并给出了极大极小问题和多目标规划的二次规划子问题的显式解 .将所得结果用于相应的算法中 ,可提高算法的有效性 .
关键词 极大极小问题 极大熵方法 二次规划 显式解
下载PDF
目标可移动的直线搜索问题的在线算法研究
10
作者 王明岳 《计算机工程与科学》 CSCD 2008年第12期60-62,104,共4页
直线搜索问题也被叫做迷失的奶牛问题,解决这个问题的算法叫做线性螺旋搜索。该算法被证明是解决这个问题的最佳在线算法,它的竞争比是9。如果这个问题中的目标可以移动,那么这个问题就被强化了。本文将提出被强化后的问题的最佳在线算... 直线搜索问题也被叫做迷失的奶牛问题,解决这个问题的算法叫做线性螺旋搜索。该算法被证明是解决这个问题的最佳在线算法,它的竞争比是9。如果这个问题中的目标可以移动,那么这个问题就被强化了。本文将提出被强化后的问题的最佳在线算法及其竞争比。Minimax定理在这个算法中扮演着重要角色。 展开更多
关键词 目标可移动的直线搜索问题 迷失的奶牛问题 在线算法 竞争比 minimax定理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部