在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资...在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。展开更多
Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship...Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship between microwave brightness temperature (TB) and LWP in the nonprecipitating clouds is studied by using satellite microwave measurements from the TRMM Microwave Imager (TMI) onboard the Tropical Rainfall Measuring Mission (TRMM), together with a radiative transfer model for microwave radiance calculations. Radiative transfer modeling shows that the sensitivity is higher at both 37.0- and 85.5-GHz horizontal polarization channels for the LWP retrievals. Also, the differences between the retrieved values responding to TBs of various channels and the theoretical values are displayed by the model. Based upon above simulations, with taking into account the factor of resolution and retrieval bias for a single,channel, a nonprecipitating cloud LWP in the summer subtropical marine environment retrieval algorithm is formulated by the combination of the two TMI horizontal polarization channels, 37.0 and 85.5 GHz. Moreover,by using TMI measurements (1Bll), this algorithm is applied to retrieving respectively LWPs for clear sky, nonprecipitating clouds, and typhoon precipitating clouds. In the clear sky case, the LWP cl^anges from -1 to 1 g m-2, and its mean value is about 10^-5 g m^-2. It indicates that, using this combination retrieval algorithm, there are no obvious systemic deviations when the LWP is low enough. The LWP values varying from 0 to 1000 g m^-2 in nonprecipitating clouds are reasonable, and its distribution pattern is very similar to the detected results in the visible channel of Visible and Infrared Scanner (VIRS) on the TRMM. In typhoon precipitating clouds, there is much more proportion of high LWP in the mature phase than the early stage. When surface rainfall rate is lower than 5 mm h^-1, the LWP increases with increasing rainfall rate.展开更多
文摘在WRFDA-3DVar(Weather Research and Forecasting model’s 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。
基金the NSFC under Grant Nos.40730950,40675027,and 40605010the Cooperate Project of LAPC,CAS(LAPCKF-2006-19),and AXA/EORC
文摘Quantitative estimates of liquid water path (LWP) in clouds using satellite measurements are critical to understanding of cloud properties and the assessment of global climate change. In this paper, the relationship between microwave brightness temperature (TB) and LWP in the nonprecipitating clouds is studied by using satellite microwave measurements from the TRMM Microwave Imager (TMI) onboard the Tropical Rainfall Measuring Mission (TRMM), together with a radiative transfer model for microwave radiance calculations. Radiative transfer modeling shows that the sensitivity is higher at both 37.0- and 85.5-GHz horizontal polarization channels for the LWP retrievals. Also, the differences between the retrieved values responding to TBs of various channels and the theoretical values are displayed by the model. Based upon above simulations, with taking into account the factor of resolution and retrieval bias for a single,channel, a nonprecipitating cloud LWP in the summer subtropical marine environment retrieval algorithm is formulated by the combination of the two TMI horizontal polarization channels, 37.0 and 85.5 GHz. Moreover,by using TMI measurements (1Bll), this algorithm is applied to retrieving respectively LWPs for clear sky, nonprecipitating clouds, and typhoon precipitating clouds. In the clear sky case, the LWP cl^anges from -1 to 1 g m-2, and its mean value is about 10^-5 g m^-2. It indicates that, using this combination retrieval algorithm, there are no obvious systemic deviations when the LWP is low enough. The LWP values varying from 0 to 1000 g m^-2 in nonprecipitating clouds are reasonable, and its distribution pattern is very similar to the detected results in the visible channel of Visible and Infrared Scanner (VIRS) on the TRMM. In typhoon precipitating clouds, there is much more proportion of high LWP in the mature phase than the early stage. When surface rainfall rate is lower than 5 mm h^-1, the LWP increases with increasing rainfall rate.