A review of recent research related to micro- porous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable ...A review of recent research related to micro- porous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.展开更多
Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo bi...Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA-h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA-h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (995%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.展开更多
The zeolitic imidazolate framework-8 (ZIF-8) was successfully synthesized using ionic liquids as struc- ture-directing agent under microwave irradiation. Ionic liquids are green solvents with low vapour pressure and...The zeolitic imidazolate framework-8 (ZIF-8) was successfully synthesized using ionic liquids as struc- ture-directing agent under microwave irradiation. Ionic liquids are green solvents with low vapour pressure and good thermal stability. They are appropriate templates for microporous materials and ideal microwave absorbers. The microwave-assisted ionothermal synthesis applied in this paper was expected to be a promising method for the preparation of microporous materials. Results showed that the as-synthesized samples (300---500 nm in diameter) could be synthesized in a short time (60 min) and possessed regular morphology, stable structure and high thermal stability (up to 720 ~C in argon atmosphere). Nitrogen adsorption-desorption test illustrated that samples produced by microwave heating had a higher surface area. Carbon dioxide adsorption test indicated that the samples synthe- sized by microwave heating had better carbon dioxide adsorption ability than those by conventional heating.展开更多
Aqueous sols and gels of tungstic acid were prepared from Na2WO4 with protonated cation-exchange resin. Nano-tungsten oxide of a microporous lamella was synthesized by means of washing of WO3· 2H2O with distilled...Aqueous sols and gels of tungstic acid were prepared from Na2WO4 with protonated cation-exchange resin. Nano-tungsten oxide of a microporous lamella was synthesized by means of washing of WO3· 2H2O with distilled water under ultrasonic wave agitation and centrifuging repeatedly, and the specific surface area tended to increase gradually with washing and centrifuging. The sample of centrifuged 7 h has more than 2 times highs specific surface area and more high photocatalytic activity . The mechanisms are also discussed.展开更多
Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials...Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.展开更多
Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorci- nol/formaldehyde as the carbon source under highly acidic conditions. The template...Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorci- nol/formaldehyde as the carbon source under highly acidic conditions. The template can be eliminated by high temperature treatment under an inert atmosphere. The obtained carbon materials were characterized by N2 adsorption-desorption, transmission electron microscopy, ther- mogravimetry and scanning electron microscopy. The results show that dodecylamine hydrochloride surfactant can be used as the template of wormlike micropores structure while octadecylamine hydrochloride results in both lamellar and wormlike micropores. The obtained carbon materials have the similar pore size in the range of 0.5-0.59 nm, but with various morphologies such as monolith, spheres, and coralline. The microporous carbon obtained from dodecylamine hydrochloride surfactant shows good adsorption performance to remove the refractory sulfur compounds and nitrogen-containing compounds in fuel.展开更多
In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and...In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.展开更多
Nano-meter microporous zinc ferrite was prepared by a hydrothermal method, using triethylamine as a template. Adsorption curves showed that the product had a microporous structure. The effects of precursor pH, reactio...Nano-meter microporous zinc ferrite was prepared by a hydrothermal method, using triethylamine as a template. Adsorption curves showed that the product had a microporous structure. The effects of precursor pH, reaction temperature and reaction time on the preparation were studied, yielding optimal conditions: pH=11, 448 K, 360 min. The morphology of zinc ferrite as observed by TEM, showed that zinc ferrite was well-crystallized and well-dispersed with little conglomeration.展开更多
文摘A review of recent research related to micro- porous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.
文摘Being simple, inexpensive, scalable and environmentally friendly, microporous biomass biochars have been attracting enthusiastic attention for application in lithium-sulfur (Li-S) batteries. Herein, porous bamboo biochar is activated via a KOH/annealing process that creates a microporous structure, boosts surface area and enhances electronic conductivity. The treated sample is used to encapsulate sulfur to prepare a microporous bamboo carbon-sulfur (BC-S) nanocomposite for use as the cathode for Li-S batteries for the first time. The BC-S nanocomposite with 50 wt.% sulfur content delivers a high initial capacity of 1,295 mA-h/g at a low discharge rate of 160 mA/g and high capacity retention of 550 mA-h/g after 150 cycles at a high discharge rate of 800 mA/g with excellent coulombic efficiency (995%). This suggests that the BC-S nanocomposite could be a promising cathode material for Li-S batteries.
文摘The zeolitic imidazolate framework-8 (ZIF-8) was successfully synthesized using ionic liquids as struc- ture-directing agent under microwave irradiation. Ionic liquids are green solvents with low vapour pressure and good thermal stability. They are appropriate templates for microporous materials and ideal microwave absorbers. The microwave-assisted ionothermal synthesis applied in this paper was expected to be a promising method for the preparation of microporous materials. Results showed that the as-synthesized samples (300---500 nm in diameter) could be synthesized in a short time (60 min) and possessed regular morphology, stable structure and high thermal stability (up to 720 ~C in argon atmosphere). Nitrogen adsorption-desorption test illustrated that samples produced by microwave heating had a higher surface area. Carbon dioxide adsorption test indicated that the samples synthe- sized by microwave heating had better carbon dioxide adsorption ability than those by conventional heating.
文摘Aqueous sols and gels of tungstic acid were prepared from Na2WO4 with protonated cation-exchange resin. Nano-tungsten oxide of a microporous lamella was synthesized by means of washing of WO3· 2H2O with distilled water under ultrasonic wave agitation and centrifuging repeatedly, and the specific surface area tended to increase gradually with washing and centrifuging. The sample of centrifuged 7 h has more than 2 times highs specific surface area and more high photocatalytic activity . The mechanisms are also discussed.
基金Financial support from National Natural Science Foundation of China(Nos.51702056 and 51772135)the Ministry of Education of China(6141A02022516)China Postdoctoral Science Foundation(2017M622902 and 2019T120790).
文摘Na-ion batteries(NIBs)have attracted considerable attention in recent years owing to the high abundance and low cost of Na.It is well known that S doping can improve the electrochemical performance of carbon materials for NIBs.However,the current methods for S doping in carbons normally involve toxic precursors or rigorous conditions.In this work,we report a creative and facile strategy for preparing S-doped porous carbons(SCs)via the pyrolysis of conjugated microporous polymers(CMPs).Briefly,thiophene-based CMPs served as the precursors and doping sources simultaneously.Simple direct carbonization of CMPs produced S-doped carbon materials with highly porous structures.When used as an anode for NIBs,the SCs exhibited a high reversible capacity of 440 mAh g?1 at 50 mA g?1 after 100 cycles,superior rate capability,and excellent cycling stability(297 mAh g?1 after 1000 cycles at 500 mA g?1),outperforming most S-doped carbon materials reported thus far.The excellent performance of the SCs is attributed to the expanded lattice distance after S doping.Furthermore,we employed ex situ X-ray photoelectron spectroscopy to investigate the electrochemical reaction mechanism of the SCs during sodiation-desodiation,which can highlight the role of doped S for Na-ion storage.
基金sponsored by the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (NO.200346)Program for New Century Excellent Talents in University (NCET-04-0270)National Natural Science Foundation of China (NO.20406005)
文摘Wormlike/lamellar microporous carbons were prepared by using long alkyl chain primary amine hydrochloride as the template and resorci- nol/formaldehyde as the carbon source under highly acidic conditions. The template can be eliminated by high temperature treatment under an inert atmosphere. The obtained carbon materials were characterized by N2 adsorption-desorption, transmission electron microscopy, ther- mogravimetry and scanning electron microscopy. The results show that dodecylamine hydrochloride surfactant can be used as the template of wormlike micropores structure while octadecylamine hydrochloride results in both lamellar and wormlike micropores. The obtained carbon materials have the similar pore size in the range of 0.5-0.59 nm, but with various morphologies such as monolith, spheres, and coralline. The microporous carbon obtained from dodecylamine hydrochloride surfactant shows good adsorption performance to remove the refractory sulfur compounds and nitrogen-containing compounds in fuel.
文摘In this work, four empirical models of statistical thickness, namely the models of Harkins and Jura, Hasley, Carbon Black and Jaroniec, were compared in order to determine the textural properties (external surface and surface of micropores) of a clay concrete without molasses and clay concretes stabilized with 8%, 12% and 16% molasses. The results obtained show that Hasley’s model can be used to obtain the external surfaces. However, it does not allow the surface of the micropores to be obtained, and is not suitable for the case of simple clay concrete (without molasses) and for clay concretes stabilized with molasses. The Carbon Black, Jaroniec and Harkins and Jura models can be used for clay concrete and stabilized clay concrete. However, the Carbon Black model is the most relevant for clay concrete and the Harkins and Jura model is for molasses-stabilized clay concrete. These last two models augur well for future research.
文摘Nano-meter microporous zinc ferrite was prepared by a hydrothermal method, using triethylamine as a template. Adsorption curves showed that the product had a microporous structure. The effects of precursor pH, reaction temperature and reaction time on the preparation were studied, yielding optimal conditions: pH=11, 448 K, 360 min. The morphology of zinc ferrite as observed by TEM, showed that zinc ferrite was well-crystallized and well-dispersed with little conglomeration.