There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last se...There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms.Applications include wearable consumer electronics,soft robotics,medical prosthetics,electronic skin,and health monitoring.In this review,we provide a state-ofthe-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications.We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials.We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors.We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications,in particular for artificial electronic skins,physiological health monitoring and assessment,and therapeutic and drug delivery.Finally,we conclude this review by offering some insight into the challenges and opportunities facing this field.展开更多
This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented a...This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented and compared, including single-phase and multiphase microflows. The main structures of microfluidic devices and the fundamental principles of microflows for particle preparation are summarized and identified. The controllability of particle size, size distribution, crystal structure, morphology, physical and chemical properties, is examined in terms of the special features of microfluidic reactors. An outlook on opinions and predictions concerning the future development of powder technology with microfluidics is specially provided.展开更多
The occurrence of osteoarthritis(OA)is highly associated with the reduced lubrication property of the joint,where a progressive and irreversible damage of the articular cartilage and consecutive inflammatory response ...The occurrence of osteoarthritis(OA)is highly associated with the reduced lubrication property of the joint,where a progressive and irreversible damage of the articular cartilage and consecutive inflammatory response dominate the mechanism.In this study,bioinspired by the super-lubrication property of cartilage and catecholamine chemistry of mussel,we successfully developed injectable hydrogel microspheres with enhanced lubrication and controllable drug release for OA treatment.Particularly,the lubricating microspheres(GelMA@DMA-MPC)were fabricated by dip coating a self-adhesive polymer(DMA-MPC,synthesized by free radical copolymerization)on superficial surface of photo-crosslinked methacrylate gelatin hydrogel microspheres(GelMA,prepared via microfluidic technology),and encapsulated with an anti-inflammatory drug of diclofenac sodium(DS)to achieve the dual-functional performance.The tribological test and drug release test showed the enhanced lubrication and sustained drug release of the GelMA@DMA-MPC microspheres.In addition,the functionalized microspheres were intra-articularly injected into the rat knee joint with an OA model,and the biological tests including qRT-PCR,immunofluorescence staining assay,X-ray radiography and histological staining assay all revealed that the biocompatible microspheres provided significant therapeutic effect against the development of OA.In summary,the injectable hydrogel microspheres developed herein greatly improved lubrication and achieved sustained local drug release,therefore representing a facile and promising technique for the treatment of OA.展开更多
文摘There are now numerous emerging flexible and wearable sensing technologies that can perform a myriad of physical and physiological measurements.Rapid advances in developing and implementing such sensors in the last several years have demonstrated the growing significance and potential utility of this unique class of sensing platforms.Applications include wearable consumer electronics,soft robotics,medical prosthetics,electronic skin,and health monitoring.In this review,we provide a state-ofthe-art overview of the emerging flexible and wearable sensing platforms for healthcare and biomedical applications.We first introduce the selection of flexible and stretchable materials and the fabrication of sensors based on these materials.We then compare the different solid-state and liquid-state physical sensing platforms and examine the mechanical deformation-based working mechanisms of these sensors.We also highlight some of the exciting applications of flexible and wearable physical sensors in emerging healthcare and biomedical applications,in particular for artificial electronic skins,physiological health monitoring and assessment,and therapeutic and drug delivery.Finally,we conclude this review by offering some insight into the challenges and opportunities facing this field.
基金the National Natural Science Foundation of China (21036002, 20876084, and 20976096)the National Basic Research Program of China (2007CB714302)
文摘This paper reviews recent development and achievements in controllable preparation of nanoparticles, micron spherical and non-spherical particles, using microfluidics. A variety of synthesis strategies are presented and compared, including single-phase and multiphase microflows. The main structures of microfluidic devices and the fundamental principles of microflows for particle preparation are summarized and identified. The controllability of particle size, size distribution, crystal structure, morphology, physical and chemical properties, is examined in terms of the special features of microfluidic reactors. An outlook on opinions and predictions concerning the future development of powder technology with microfluidics is specially provided.
基金This study was financially supported by National Natural Science Foundation of China(52022043 and 81930051)Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program(20191080593)+3 种基金Precision Medicine Foundation,Tsinghua University,China(10001020107)Shanghai Jiao Tong University“Medical and Research”Program(ZH2018ZDA04)Science and Technology Commission of Shanghai Municipality(18ZR1434200,18140901500 and 19440760400)Research Fund of State Key Laboratory of Tribology,Tsinghua University,China(SKLT2020C11).
文摘The occurrence of osteoarthritis(OA)is highly associated with the reduced lubrication property of the joint,where a progressive and irreversible damage of the articular cartilage and consecutive inflammatory response dominate the mechanism.In this study,bioinspired by the super-lubrication property of cartilage and catecholamine chemistry of mussel,we successfully developed injectable hydrogel microspheres with enhanced lubrication and controllable drug release for OA treatment.Particularly,the lubricating microspheres(GelMA@DMA-MPC)were fabricated by dip coating a self-adhesive polymer(DMA-MPC,synthesized by free radical copolymerization)on superficial surface of photo-crosslinked methacrylate gelatin hydrogel microspheres(GelMA,prepared via microfluidic technology),and encapsulated with an anti-inflammatory drug of diclofenac sodium(DS)to achieve the dual-functional performance.The tribological test and drug release test showed the enhanced lubrication and sustained drug release of the GelMA@DMA-MPC microspheres.In addition,the functionalized microspheres were intra-articularly injected into the rat knee joint with an OA model,and the biological tests including qRT-PCR,immunofluorescence staining assay,X-ray radiography and histological staining assay all revealed that the biocompatible microspheres provided significant therapeutic effect against the development of OA.In summary,the injectable hydrogel microspheres developed herein greatly improved lubrication and achieved sustained local drug release,therefore representing a facile and promising technique for the treatment of OA.