Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A highthroughput and sensi...Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A highthroughput and sensitive method for drug metabolite analysis will largely promote the drug discovery industry. The basic barrier of metabolite analysis comes from the interference of complex components in cell biological system and low abundance of target substances. As a powerful tool in biosample analysis, microfluidic chip enhances the sensitivity and throughput by integrating multiple functional units into one chip. In this review, we discussed three critical steps of establishing functional microfluidic platform for cellular metabolism study. Cell in vitro culture model, on chip sample pretreatment, and microchip combined detectors were described in details and demonstrated by works in five years. And a brief summary was given to discuss the advantages as well as challenges of applying microchip method in cell metabolite and biosample analysis.展开更多
基金financially supported by National Natural Science Foundation of China(Nos.8137337391213305+1 种基金21227006)CERS–China Equipment and Education Resources System(No.CERS-1-75)
文摘Cell metabolite analysis is of great interest to analytical chemists and physiologists, with some metabolites having been identified as important indicators of major diseases such as cancer. A highthroughput and sensitive method for drug metabolite analysis will largely promote the drug discovery industry. The basic barrier of metabolite analysis comes from the interference of complex components in cell biological system and low abundance of target substances. As a powerful tool in biosample analysis, microfluidic chip enhances the sensitivity and throughput by integrating multiple functional units into one chip. In this review, we discussed three critical steps of establishing functional microfluidic platform for cellular metabolism study. Cell in vitro culture model, on chip sample pretreatment, and microchip combined detectors were described in details and demonstrated by works in five years. And a brief summary was given to discuss the advantages as well as challenges of applying microchip method in cell metabolite and biosample analysis.