Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expa展开更多
The microcrystalline structure and microvoid structure in carbon fibers during graphitization process (2300-2700 ℃) were characterized employing laser micro-Raman scattering (Raman), X-ray diffraction (XRD), sm...The microcrystalline structure and microvoid structure in carbon fibers during graphitization process (2300-2700 ℃) were characterized employing laser micro-Raman scattering (Raman), X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy (HR-TEM). The crystalline sizes (La, Lc) increased and interlayer spacing (d002) decreased with increasing heat treatment temperature (HTT). The microvoids in the fibers grew up and contacted to the neighbors with the development of microcrystalline. In addition, the preferred orientation of graphite crystallite along fiber axis decreased and microvoids increased. The results are crucial for analyzing the evolution of microstructure of carbon fibers in the process of heat treatment and important for the preparation of high strength and high modulus carbon fibers.展开更多
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expa
基金financially supported by the National High Technology Research and Development Program of China(863 Program,No.2015AA03A204)
文摘The microcrystalline structure and microvoid structure in carbon fibers during graphitization process (2300-2700 ℃) were characterized employing laser micro-Raman scattering (Raman), X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy (HR-TEM). The crystalline sizes (La, Lc) increased and interlayer spacing (d002) decreased with increasing heat treatment temperature (HTT). The microvoids in the fibers grew up and contacted to the neighbors with the development of microcrystalline. In addition, the preferred orientation of graphite crystallite along fiber axis decreased and microvoids increased. The results are crucial for analyzing the evolution of microstructure of carbon fibers in the process of heat treatment and important for the preparation of high strength and high modulus carbon fibers.