We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely C...We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely COF-909-Cu,-Co or-Fe,where for the first time the diffusio-phoretic propulsion was utilized to design COF-based micro/nanomotors.The mechanism studies revealed that the metal ions decorated in the COF-909 backbone could promote the separation of electron and holes and trigger the production of sufficient ionic and reactive oxygen species under visible light irradiation.In this way,strong light-induced self-diffusiophoretic effect is achieved,resulting in good dispersion of COFs.Among them,COF-909-Fe showed the highest dispersion performance,along with a drastic decrease in particle size from 5μm to500 nm,within only 30 min light irradiation,which is inaccessible by using traditional magnetic stirring or ultrasonication methods.More importantly,benefiting from the outstanding dispersion efficiency,COF-909-Fe micro/nanomotors were demonstrated to be efficient in photocatalytic degradation of tetracycline,about 8 times faster than using traditional magnetic stirring method.This work opens up a new avenue to prepare isolated nanosized COFs in a high-fast,simple,and green manner.展开更多
Micro/nanomotors(MNMs)are small-scale devices that can effectively convert various forms of energy into mechanical motion.Their controllable motility and good permeability have attracted the interest of researchers as...Micro/nanomotors(MNMs)are small-scale devices that can effectively convert various forms of energy into mechanical motion.Their controllable motility and good permeability have attracted the interest of researchers as promising drug carriers in cancer therapy.Compared with traditional formulations,micro/nanomotor drug delivery systems can greatly improve therapeutic efficiency and reduce the side effects of antitumor drugs.This review mainly discusses the advantages of micro/nanomotor drug delivery systems and the applications of MNMs propelled by exogenous,endogenous,and biohybrid power in cancer therapy.Finally,the main challenges of the applications of micro/nanomotor drug delivery systems,as well as future development trends and opportunities are discussed.展开更多
基金supported by Huazhong University of Science and Technology(No.2021XXJS036,3004013134)National Natural Science Foundation of China(No.51903099,82002879,22102059)+2 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)China Postdoctoral Science Foundation(2021M692475,2021T140524,XJ2021037)support from the 100 Talents Program of the Hubei Provincial Government。
文摘We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely COF-909-Cu,-Co or-Fe,where for the first time the diffusio-phoretic propulsion was utilized to design COF-based micro/nanomotors.The mechanism studies revealed that the metal ions decorated in the COF-909 backbone could promote the separation of electron and holes and trigger the production of sufficient ionic and reactive oxygen species under visible light irradiation.In this way,strong light-induced self-diffusiophoretic effect is achieved,resulting in good dispersion of COFs.Among them,COF-909-Fe showed the highest dispersion performance,along with a drastic decrease in particle size from 5μm to500 nm,within only 30 min light irradiation,which is inaccessible by using traditional magnetic stirring or ultrasonication methods.More importantly,benefiting from the outstanding dispersion efficiency,COF-909-Fe micro/nanomotors were demonstrated to be efficient in photocatalytic degradation of tetracycline,about 8 times faster than using traditional magnetic stirring method.This work opens up a new avenue to prepare isolated nanosized COFs in a high-fast,simple,and green manner.
基金supported by the National Natural Science Founda-tion of China(82173757)the Young Scholar Program of Shandong University(YSPSDU,2017WLJH40)。
文摘Micro/nanomotors(MNMs)are small-scale devices that can effectively convert various forms of energy into mechanical motion.Their controllable motility and good permeability have attracted the interest of researchers as promising drug carriers in cancer therapy.Compared with traditional formulations,micro/nanomotor drug delivery systems can greatly improve therapeutic efficiency and reduce the side effects of antitumor drugs.This review mainly discusses the advantages of micro/nanomotor drug delivery systems and the applications of MNMs propelled by exogenous,endogenous,and biohybrid power in cancer therapy.Finally,the main challenges of the applications of micro/nanomotor drug delivery systems,as well as future development trends and opportunities are discussed.