AIM: To study the effects of hepatic ischemia/ reperfusion (I/R) injury on store-operated calcium channel (SOC) currents (Isoc) in freshly isolated rat Kupffer cells, and the effects of Ca^2+ channel blockers,...AIM: To study the effects of hepatic ischemia/ reperfusion (I/R) injury on store-operated calcium channel (SOC) currents (Isoc) in freshly isolated rat Kupffer cells, and the effects of Ca^2+ channel blockers, 2-aminoethoxydiphenyl borate (2-APB), SK&F96365, econazole and miconazole, on Isoc in isolated rat Kupffer cells after hepatic I/R injury.METHODS: The model of rat hepatic I/R injury was established. Whole-cell patch-clamp techniques were performed to investigate the effects of 2-APB, SK&F96365, econazole and miconazole on Isoc in isolated rat Kupffer cells after hepatic I/R injury.RESULTS: I/R injury significantly increased Isoc from -80.4±25.2pA to -159.5±34.5pA (^bp 〈 0.01, n = 30). 2-APB (20, 40, 60, 80, 100 pmol/L), SK&F96365 (5, 10, 20, 40, 50 pmol/L), econazole (0.1, 0.3, 1, 3, 10 μmol/L) and miconazole (0.1, 0.3, 1, 3, 10 μmol/L) inhibited Isoc in a concentration-dependent manner with IC50 of 37.41 μmol/L (n = 8), 5.89 μmol/L (n = 11), 0.21 μmol/L (n = 13), and 0.28 μmol/L (n = 10). The peak value of Isoc in the I-V relationship was decreased by the blockers in different concentrations, but the reverse potential of Isoc was not transformed. CONCLUSION: SOC is the main channel for the influx of Ca^2+ during hepatic I/R injuries. Calcium channel blockers, 2-APB, SK&F96365, econazole and miconazole,have obviously protective effects on I/R injury, probably by inhibiting Isoc in Kupffer cells and preventing the activation of Kupffer cells.展开更多
基金the National Natural Science Foundation of China,No.30270532 Trans-Century Training Programme Foundation for the Talents by the Ministry of Education of China, No. 2002-48Shuguang Program Project of Shanghai Educational Committee,No.02SG20
文摘AIM: To study the effects of hepatic ischemia/ reperfusion (I/R) injury on store-operated calcium channel (SOC) currents (Isoc) in freshly isolated rat Kupffer cells, and the effects of Ca^2+ channel blockers, 2-aminoethoxydiphenyl borate (2-APB), SK&F96365, econazole and miconazole, on Isoc in isolated rat Kupffer cells after hepatic I/R injury.METHODS: The model of rat hepatic I/R injury was established. Whole-cell patch-clamp techniques were performed to investigate the effects of 2-APB, SK&F96365, econazole and miconazole on Isoc in isolated rat Kupffer cells after hepatic I/R injury.RESULTS: I/R injury significantly increased Isoc from -80.4±25.2pA to -159.5±34.5pA (^bp 〈 0.01, n = 30). 2-APB (20, 40, 60, 80, 100 pmol/L), SK&F96365 (5, 10, 20, 40, 50 pmol/L), econazole (0.1, 0.3, 1, 3, 10 μmol/L) and miconazole (0.1, 0.3, 1, 3, 10 μmol/L) inhibited Isoc in a concentration-dependent manner with IC50 of 37.41 μmol/L (n = 8), 5.89 μmol/L (n = 11), 0.21 μmol/L (n = 13), and 0.28 μmol/L (n = 10). The peak value of Isoc in the I-V relationship was decreased by the blockers in different concentrations, but the reverse potential of Isoc was not transformed. CONCLUSION: SOC is the main channel for the influx of Ca^2+ during hepatic I/R injuries. Calcium channel blockers, 2-APB, SK&F96365, econazole and miconazole,have obviously protective effects on I/R injury, probably by inhibiting Isoc in Kupffer cells and preventing the activation of Kupffer cells.