We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system w...We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system were studied by using DTA, XRD and SEM. The results indicate that the formation of the MgB2 phase is very fast and the high increasing rate in temperature is necessary to obtain high quality MgB2. In addition, the effects of the Zr-doping in Mg1-xZrxB2 bulk samples fabricated by the solid state reaction at ambient pressure on phase compositions, microstructure and flux pinning behavior were investigated by using XRD, SQUID magnetometer, SEM and TEM. Critical current density Jc can be significantly enhanced by the Zr-doping and the best data are achieved in Mg0.9Zr0.1B2. For this sample, Jc values are remarkably improved to 1. 83 × 106 A/cm2 in self-field and 5. 51 × 105 A/cm2in 1T at 20K. Also, high quality MgB2/Ta/Cu wires and tapes with and without Ti-doping, MgB2/Fe wires and 18 filament MgB2/NbZr/Cu tapes were fabricated by the powder-in-tube (PIT) method at ambient pressure. The phase compositions, microstructure features and flux pinning properties were studied. The results suggest that Fe is the best metal for these sheaths. MgB2/Fe wires exhibit very high Jc at high temperatures and high fields. Jc values reach as high as 1.43 × 105A/cm2(4. 2K, 4T) and 3.72 × 104 A/cm2(15K, 4T).展开更多
High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and m...High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.展开更多
The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the micr...The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.展开更多
Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepa...Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×10^6A/cm^2 (10K, 0.5T) and 1.7×10^6A/cm^2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.展开更多
基金National Natural Science Foundation of China(No.50172040)National High-Technology Development Program of China(No.2002AA306251)
文摘We prepared a series of MgB2 bulk samples under different temperatures, holding time and increasing rates in temperature by the solid state reaction. The thermodynamic behavior and phase formation in the Mg-B system were studied by using DTA, XRD and SEM. The results indicate that the formation of the MgB2 phase is very fast and the high increasing rate in temperature is necessary to obtain high quality MgB2. In addition, the effects of the Zr-doping in Mg1-xZrxB2 bulk samples fabricated by the solid state reaction at ambient pressure on phase compositions, microstructure and flux pinning behavior were investigated by using XRD, SQUID magnetometer, SEM and TEM. Critical current density Jc can be significantly enhanced by the Zr-doping and the best data are achieved in Mg0.9Zr0.1B2. For this sample, Jc values are remarkably improved to 1. 83 × 106 A/cm2 in self-field and 5. 51 × 105 A/cm2in 1T at 20K. Also, high quality MgB2/Ta/Cu wires and tapes with and without Ti-doping, MgB2/Fe wires and 18 filament MgB2/NbZr/Cu tapes were fabricated by the powder-in-tube (PIT) method at ambient pressure. The phase compositions, microstructure features and flux pinning properties were studied. The results suggest that Fe is the best metal for these sheaths. MgB2/Fe wires exhibit very high Jc at high temperatures and high fields. Jc values reach as high as 1.43 × 105A/cm2(4. 2K, 4T) and 3.72 × 104 A/cm2(15K, 4T).
文摘High temperature superconductor research is presently concentrated upon the flux pinning properties of the Abrikosov lattice of the mixed-mode superconducting phase. The temperature thermal fluctuations, current and magnetic field unpin the flux vortices and so cause electromagnetic resistivity in high temperature superconductors. Materials with higher vortex pinning exhibit less resistivity and are more attractive for industrial uses. In the present article, we measured and correlated the pinning flux energy barrier, determined by AC magnetic measurements, and transmission electron microscopy measurements to the critical current Jc in Yttrium- and Silver-doped MgB2 superconductors. The energy of the flux vortex was evaluated as a function of the magnetic field. The energy barrier curves suggest an optimal doping level to occur in doped materials. This result only depends on the optimal size and distribution of precipitates, and not on their chemical composition. The energy barriers have been compared with that of undoped MgB2 in literature.
基金Project supported by the National Natural Science Foundation of China(Grant Nos20271052 and 20571083)the National Basic Research Program of China(Grant No2006CB601004)
文摘The crystal structure and the superconductivity for samples Mg(B1-xCx)2 (0〈 x 〈0.09) prepared by a hybrid microwave synthesis have been investigated. The starting material B10C is also obtained by using the microwave method. The carbon can distribute uniformly in the Mg(B1-xCx)2 samples because boron and carbon are mixed on an atomic scale in the staring material B10C. The dependences of both lattice parameters and superconducting transition temperature Tc on carbon content accord with those reported in the literature. The upper critical field He2 at 20 K can be enhanced from about 4.3 T for x = 0 to 10 T for x = 0.05. The critical current density Jc of Mg(B0.95 C0.05)2 is 1.05×10^4 A/cm^2 at 20 K and 1 T.
基金Project supported by the Natural Science Foundation of Gansu province of China (Grant No ZS032-B25-019).
文摘Pure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×10^6A/cm^2 (10K, 0.5T) and 1.7×10^6A/cm^2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.