The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast micro...The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast microstructure, and do not cause the formation of any new phase. After 0.5wt%TiC was added to the ZA84 alloy, the morphology of ternary phases on the grain boundaries changed from coarse quasi-continuous net to fine disconnected net, and the distribution of ternary phases became dispersive and homogeneous. At the same time, the tensile properties of ZA84+0.5TiC alloy at room temperature were comparable to those of AZ91D alloy, and were higher than those of ZA84 alloy. At 150 ℃, the tensile and creep properties of ZA84+0.5TiC alloy were also higher than those of ZA84 and AZ91D alloys. In addition, compared with the AZ91D alloy, the casting fluidity of ZA84+0.5TiC alloy was slightly poor, but better than that of ZA84 alloy. The reason could be related to the effect of TiC on the solidification temperature range of ZA84 alloy.展开更多
The effects of Zn content on the as-cast microstructure and mechanical properties of Mg-xZn-4Al alloys containing TiC and rare earth elements were investigated by optical microscopy (OM), scanning electron microscopy ...The effects of Zn content on the as-cast microstructure and mechanical properties of Mg-xZn-4Al alloys containing TiC and rare earth elements were investigated by optical microscopy (OM), scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD) analysis and tensile test. The results show that Zn content which increased from 8% to 12% does not obviously influence on the alloy phase type of the Mg-xZn-4Al experimental alloys containing 0.25%RE and l%TiC, but with Zn content increasing from 8% to 12%, the amount of Mg32(Al,Zn)49 phase in the as-cast microstructure of the experimental alloys increases and its distribution becomes more continuous. In addition, the Mg-10Zn-4Al alloy containing 0.25%RE and 1TiC has the highest ultimate tensile strength at room temperature and 150℃and highest yield strength and elongation at 150℃. Furthermore, with Zn content increasing from 8% to 12%, the yield strength and elongation of Mg-xZn-4A1 experimental alloys containing 0.25%RE and 1%TiC increase and decrease at room temperature, respectively.展开更多
基金Funded by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Develop-ment Program of China(973)(No.2007CB613704)+1 种基金the Natural ScienceFoundation Project of CQ CSTC(No.2007BB4400)Chongqing Scienceand Technology Commission in China (No.2006AA4012-9-6)
文摘The as-cast microstructure, mechanical properties and casting fluidity of ZA84 alloy containing TiC were investigated. The experimental results indicate that adding 0.5wt%TiC to ZA84 alloy can refine the as-cast microstructure, and do not cause the formation of any new phase. After 0.5wt%TiC was added to the ZA84 alloy, the morphology of ternary phases on the grain boundaries changed from coarse quasi-continuous net to fine disconnected net, and the distribution of ternary phases became dispersive and homogeneous. At the same time, the tensile properties of ZA84+0.5TiC alloy at room temperature were comparable to those of AZ91D alloy, and were higher than those of ZA84 alloy. At 150 ℃, the tensile and creep properties of ZA84+0.5TiC alloy were also higher than those of ZA84 and AZ91D alloys. In addition, compared with the AZ91D alloy, the casting fluidity of ZA84+0.5TiC alloy was slightly poor, but better than that of ZA84 alloy. The reason could be related to the effect of TiC on the solidification temperature range of ZA84 alloy.
基金Projects(2001AA331050) supported by the National High-Tech Research and Development Program of ChinaProject (CSTC-2004AA4003) supported by Chongqing Science and Technology Commission of China
文摘The effects of Zn content on the as-cast microstructure and mechanical properties of Mg-xZn-4Al alloys containing TiC and rare earth elements were investigated by optical microscopy (OM), scanning electron microscopy (SEM) analysis, X-ray diffraction (XRD) analysis and tensile test. The results show that Zn content which increased from 8% to 12% does not obviously influence on the alloy phase type of the Mg-xZn-4Al experimental alloys containing 0.25%RE and l%TiC, but with Zn content increasing from 8% to 12%, the amount of Mg32(Al,Zn)49 phase in the as-cast microstructure of the experimental alloys increases and its distribution becomes more continuous. In addition, the Mg-10Zn-4Al alloy containing 0.25%RE and 1TiC has the highest ultimate tensile strength at room temperature and 150℃and highest yield strength and elongation at 150℃. Furthermore, with Zn content increasing from 8% to 12%, the yield strength and elongation of Mg-xZn-4A1 experimental alloys containing 0.25%RE and 1%TiC increase and decrease at room temperature, respectively.