The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd...The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.展开更多
通过SEM、TEM和蠕变试验机研究不同温度下Mg-8Gd-2Nd-0.5Sb-0.6Zr(质量分数/%)合金高温蠕变行为,分析其组织演变,并通过计算合金的蠕变激活能分析蠕变机制。结果表明:加载应力10 h后,合金进入稳态蠕变阶段,随着温度升高蠕变性能差异明...通过SEM、TEM和蠕变试验机研究不同温度下Mg-8Gd-2Nd-0.5Sb-0.6Zr(质量分数/%)合金高温蠕变行为,分析其组织演变,并通过计算合金的蠕变激活能分析蠕变机制。结果表明:加载应力10 h后,合金进入稳态蠕变阶段,随着温度升高蠕变性能差异明显增大;高温高应力情况下,组织上观察不到网状析出相,滑移线较多,存在孪晶,位错密度较高,此时网状析出β′相已经完全转变为颗粒状β相;蠕变温度在200、250、300℃下的应力指数为3.5、4.6和5.8,蠕变激活能为77.8、86.8、99.6 k J/mol。合金低温时受位错交滑移机制控制;高温时受扩散机制控制。展开更多
基金financially supported by the National Natural Science Foundation of China (Nos.52071035,U1764253)。
文摘The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.
文摘通过SEM、TEM和蠕变试验机研究不同温度下Mg-8Gd-2Nd-0.5Sb-0.6Zr(质量分数/%)合金高温蠕变行为,分析其组织演变,并通过计算合金的蠕变激活能分析蠕变机制。结果表明:加载应力10 h后,合金进入稳态蠕变阶段,随着温度升高蠕变性能差异明显增大;高温高应力情况下,组织上观察不到网状析出相,滑移线较多,存在孪晶,位错密度较高,此时网状析出β′相已经完全转变为颗粒状β相;蠕变温度在200、250、300℃下的应力指数为3.5、4.6和5.8,蠕变激活能为77.8、86.8、99.6 k J/mol。合金低温时受位错交滑移机制控制;高温时受扩散机制控制。