Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase...Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.展开更多
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207)International Cooperation project of the Ministry of Science and Technology of China(No.2014DFA50320)Science and Technology Major Project of Shanxi Province(No.MC2016-06)
文摘Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.