为了探究在ZnAl合金涂层中加入Mg、RE元素后对其耐腐蚀性能的影响,采用中性盐雾试验对电弧喷涂ZnAl合金涂层和ZnAlMgRE多元合金涂层进行了耐腐蚀性能研究,通过SEM/EDS和XRD对涂层腐蚀前后的结构和组成进行了分析,采用交流阻抗研究了腐...为了探究在ZnAl合金涂层中加入Mg、RE元素后对其耐腐蚀性能的影响,采用中性盐雾试验对电弧喷涂ZnAl合金涂层和ZnAlMgRE多元合金涂层进行了耐腐蚀性能研究,通过SEM/EDS和XRD对涂层腐蚀前后的结构和组成进行了分析,采用交流阻抗研究了腐蚀电化学机制。结果表明:Zn Al涂层和Zn Al MgRE涂层孔隙率分别为4.2%和3.6%,后者的孔隙率更低;经不同周期中性盐雾试验后,Zn Al MgRE涂层表面生成难溶的Mg、Al尖晶石型产物,电化学阻抗谱表明其具有更好的耐盐雾腐蚀性能。ZnAl合金中Mg的加入与Al共同使涂层在盐雾试验中形成难溶于水的腐蚀产物,通过阻碍Zn腐蚀产物的流失,最终形成致密的腐蚀产物层,提升自封闭效果;RE元素的加入细化了涂层组织,并使其更加致密。二者共同促使涂层及腐蚀产物层对腐蚀介质向基体中的渗透形成阻碍作用,进而达到更好的耐腐蚀效果。展开更多
以综合电化学性能较佳的低镁含量合金La0.64Gd0.2Mg0.16Ni3.1Co0.3Al0.1为基础,通过改变Mg元素含量的添加方式,用感应熔炼方法与热处理制备了La0.64Gd0.2Mg0.16(1+x)Ni3.1Co0.3Al0.1系列合金,系统研究了该条件下镁元素成分波动(Mg...以综合电化学性能较佳的低镁含量合金La0.64Gd0.2Mg0.16Ni3.1Co0.3Al0.1为基础,通过改变Mg元素含量的添加方式,用感应熔炼方法与热处理制备了La0.64Gd0.2Mg0.16(1+x)Ni3.1Co0.3Al0.1系列合金,系统研究了该条件下镁元素成分波动(Mg过量值x)对La-Mg-Ni系A2B7型合金微观结构和电化学性能的影响规律。合金相结构分析表明,合金退火组织由主相Ce2Ni7(Gd2Co7)型以及Pr5Co19型、Pu Ni3型和Ca Cu5型多相组成,随Mg过量值x增加,合金中主相Ce2Ni7型相丰度呈现先增加后减小的趋势;当Mg过量值0〈x≤50%时,合金组织的Ce2Ni7型主相相丰度达到81.04%~87.18%;x=0,80%时,Ce2Ni7型主相丰度减小至76.3%以下。电化学测试结果表明,随Mg过量值x增加,合金电极最大放电容量呈先增加后降低趋势,x=10%时合金具有最高电化学放电容量(384.6 m Ah·g-1);当Mg过量值x在5%~50%范围内变化时,其电极循环稳定性均保持在S100≥90%,此时镁元素成分波动变化对合金电极循环稳定性的影响不敏感。合金电极的高倍率放电性能(HRD)随Mg过量值的增加呈先增大后减小趋势,其中电极表面的电荷转移速率是影响合金电化学反应动力学性能的主要控制步骤。展开更多
文摘为了探究在ZnAl合金涂层中加入Mg、RE元素后对其耐腐蚀性能的影响,采用中性盐雾试验对电弧喷涂ZnAl合金涂层和ZnAlMgRE多元合金涂层进行了耐腐蚀性能研究,通过SEM/EDS和XRD对涂层腐蚀前后的结构和组成进行了分析,采用交流阻抗研究了腐蚀电化学机制。结果表明:Zn Al涂层和Zn Al MgRE涂层孔隙率分别为4.2%和3.6%,后者的孔隙率更低;经不同周期中性盐雾试验后,Zn Al MgRE涂层表面生成难溶的Mg、Al尖晶石型产物,电化学阻抗谱表明其具有更好的耐盐雾腐蚀性能。ZnAl合金中Mg的加入与Al共同使涂层在盐雾试验中形成难溶于水的腐蚀产物,通过阻碍Zn腐蚀产物的流失,最终形成致密的腐蚀产物层,提升自封闭效果;RE元素的加入细化了涂层组织,并使其更加致密。二者共同促使涂层及腐蚀产物层对腐蚀介质向基体中的渗透形成阻碍作用,进而达到更好的耐腐蚀效果。
文摘以综合电化学性能较佳的低镁含量合金La0.64Gd0.2Mg0.16Ni3.1Co0.3Al0.1为基础,通过改变Mg元素含量的添加方式,用感应熔炼方法与热处理制备了La0.64Gd0.2Mg0.16(1+x)Ni3.1Co0.3Al0.1系列合金,系统研究了该条件下镁元素成分波动(Mg过量值x)对La-Mg-Ni系A2B7型合金微观结构和电化学性能的影响规律。合金相结构分析表明,合金退火组织由主相Ce2Ni7(Gd2Co7)型以及Pr5Co19型、Pu Ni3型和Ca Cu5型多相组成,随Mg过量值x增加,合金中主相Ce2Ni7型相丰度呈现先增加后减小的趋势;当Mg过量值0〈x≤50%时,合金组织的Ce2Ni7型主相相丰度达到81.04%~87.18%;x=0,80%时,Ce2Ni7型主相丰度减小至76.3%以下。电化学测试结果表明,随Mg过量值x增加,合金电极最大放电容量呈先增加后降低趋势,x=10%时合金具有最高电化学放电容量(384.6 m Ah·g-1);当Mg过量值x在5%~50%范围内变化时,其电极循环稳定性均保持在S100≥90%,此时镁元素成分波动变化对合金电极循环稳定性的影响不敏感。合金电极的高倍率放电性能(HRD)随Mg过量值的增加呈先增大后减小趋势,其中电极表面的电荷转移速率是影响合金电化学反应动力学性能的主要控制步骤。