Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of...Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion.展开更多
Zeolites catalyzed methanol-to-olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the...Zeolites catalyzed methanol-to-olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the MTO process, its detailed reaction mechanism is not yet well understood. Here we summarize our work on the hydrocarbon pool reaction mechanism based on theoretical calculations. We proposed that the olefins themselves are likely to be the dominating hydrocarbon pool species, and the distribution of cracking precursors and diffusion constraints affect the selectivity. The similarities between aromatic-based and olefin-based cycles are highlighted.展开更多
The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied...The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied using tetramethylethene(TME) as a representative olefinic hydrocarbon pool in H-SAPO-18 zeotype. The overall free energy barrier at 673 K was calculated and found to be less than 150 kJ/mol in the TME-based cycle, much lower than those in the aromatic-based cycle(〉 200 kJ/mol), indicating that olefins themselves are the dominant active hydrocarbon pool species in H-SAPO-18. The similarity of the intermediates involved between the aromatic-based cycle and the olefin-based cycle was also highlighted, revealing that both cycles were pattern-consistent. The selectivity related to the distribution of cracking precursors, such as higher olefins or carbenium ions, as a result of the olefin-based cycle for the MTO conversion. The enthalpy barrier of the crack-ing step scaled linearly with the number of carbon atoms of cracking precursors to produce ethene or propene with ethene being much less favored than propene for cracking of C7 and higher pre-cursors. This work highlighted the importance of the olefin-based cycle in H-SAPO-18 for the MTO conversion and established the similarity between the olefin-based and aromatic-based cycles.展开更多
基金supported by the National Basic Research Program of China (2009CB623504)the National Science Foundation of China (21103231)Shanghai Science Foundation (11ZR1449700)
文摘Selectivity control is a difficult scientific and industrial challenge in methanol-to-olefins(MTO)conversion.It has been experimentally established that the topology of zeolite catalysts influenced the distribution of products.Besides the topology effect on reaction kinetics,the topology influences the diffusion of reactants and products in catalysts as well.In this work,by using COMPASS force-field molecular dynamics method,we investigated the intracrystalline diffusion of ethene and propene in four different zeolites,CHA,MFI,BEA and FAU,at different temperatures.The self-diffusion coefficients and diffusion activation barriers were calculated.A strong restriction on the diffusion of propene in CHA was observed because the self-diffusion coefficient ratio of ethene to propene is larger than 18 and the diffusion activation barrier of propene is more than 20 kJ/mol in CHA.This ratio decreases with the increase of temperature in the four investigated zeolites.The shape selectivity on products from diffusion perspective can provide some implications on the understanding of the selectivity difference between HSAPO-34 and HZSM-5 catalysts for the MTO conversion.
文摘Zeolites catalyzed methanol-to-olefins (MTO) conversion provides an alternative process to produce light olefins such as ethene and propene from nonpetroleum resources. Despite of successful industrialization of the MTO process, its detailed reaction mechanism is not yet well understood. Here we summarize our work on the hydrocarbon pool reaction mechanism based on theoretical calculations. We proposed that the olefins themselves are likely to be the dominating hydrocarbon pool species, and the distribution of cracking precursors and diffusion constraints affect the selectivity. The similarities between aromatic-based and olefin-based cycles are highlighted.
基金supported by the National Key Research and Development Program of China (2016YFB0701100, 2017YFB0702800)the National Natural Science Foundation of China (21673295)~~
文摘The reaction mechanism of zeolite- or zeotype-catalyzed methanol-to-olefins(MTO) conversion is still a subject of debate. Employing periodic density functional theory calculations, the olefin-based cycle was studied using tetramethylethene(TME) as a representative olefinic hydrocarbon pool in H-SAPO-18 zeotype. The overall free energy barrier at 673 K was calculated and found to be less than 150 kJ/mol in the TME-based cycle, much lower than those in the aromatic-based cycle(〉 200 kJ/mol), indicating that olefins themselves are the dominant active hydrocarbon pool species in H-SAPO-18. The similarity of the intermediates involved between the aromatic-based cycle and the olefin-based cycle was also highlighted, revealing that both cycles were pattern-consistent. The selectivity related to the distribution of cracking precursors, such as higher olefins or carbenium ions, as a result of the olefin-based cycle for the MTO conversion. The enthalpy barrier of the crack-ing step scaled linearly with the number of carbon atoms of cracking precursors to produce ethene or propene with ethene being much less favored than propene for cracking of C7 and higher pre-cursors. This work highlighted the importance of the olefin-based cycle in H-SAPO-18 for the MTO conversion and established the similarity between the olefin-based and aromatic-based cycles.