High-pressure solid-state metathesis(HPSSM)reaction is an effective route to novel metal nitrides.A recent advance in HPSSM reactions is presented for a number of examples,including 3d transition metal nitrides(ε-Fe_...High-pressure solid-state metathesis(HPSSM)reaction is an effective route to novel metal nitrides.A recent advance in HPSSM reactions is presented for a number of examples,including 3d transition metal nitrides(ε-Fe_(3)N,ε-Fe_(3-x)Co_(x)N,CrN,and Co_(4)N_(x)),4d transition metal nitrides(MoNx),and 5d transition metal nitrides(Re_(3)N,WN_(x)).Thermodynamic investigations based on density functional theory(DFT)calculations on several typical HPSSM reactions between metal oxides and boron nitride indicate that the pressure could reduce the reaction enthalpy △H.High-pressure confining environment thermodynamically favors an ion-exchange process between metal atom and boron atom,and successfully results in the formation of well-crystalized metal nitrides with potential applications.展开更多
以三氟甲基磺酰氯为原料,经胺化、成盐、酸碱中和、复分解置换反应合成了无水双(三氟甲基磺酰)亚胺锂。通过研究温度、溶剂、反应时间、氨气通入速率等对反应产率的影响,优化了三氟甲基磺酰胺与双(三氟甲基磺酰)亚胺钾的合成条件。得到...以三氟甲基磺酰氯为原料,经胺化、成盐、酸碱中和、复分解置换反应合成了无水双(三氟甲基磺酰)亚胺锂。通过研究温度、溶剂、反应时间、氨气通入速率等对反应产率的影响,优化了三氟甲基磺酰胺与双(三氟甲基磺酰)亚胺钾的合成条件。得到三氟甲基磺酰胺的最优合成条件为以乙腈为溶剂,氨气通入速度为0.8 m L/min,反应时间为1 h,反应温度为-10^-5℃;双(三氟甲基磺酰)亚胺钾的最优合成条件为反应时间3 h,反应温度-10^-5℃。利用FT-IR、13C-NMR和ICP对中间产物与最终产物进行了表征。双(三氟甲基磺酰)亚胺锂的产率为72.65%。展开更多
Reactions of [Cp2Ln(μ-Cl)]2 (Cp= η5-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [(THF)3LiE2C2Bi0H10Li. (THF)]2 (E= S, Se) in THF afforded the dinuclear sandwich complexes of formula [CP2LnE2C2B10H10]2[LI(TH...Reactions of [Cp2Ln(μ-Cl)]2 (Cp= η5-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [(THF)3LiE2C2Bi0H10Li. (THF)]2 (E= S, Se) in THF afforded the dinuclear sandwich complexes of formula [CP2LnE2C2B10H10]2[LI(THF)4]2[E = S, Ln=Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E=Se, Ln=Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (η1, η2-E2C2B10H10) bridging ligands and the central Ln2E2 four membered ring is not planar.展开更多
The five-membered ring products and intermediates of cyclometalation reactions are very easily synthesized via donation from a hetero atom to a metal atom, which leads to the very high functionality of the product. Th...The five-membered ring products and intermediates of cyclometalation reactions are very easily synthesized via donation from a hetero atom to a metal atom, which leads to the very high functionality of the product. This functionality is caused by the donation of the hetero atom and various types of metal atoms, halogen atom and other ligands such as alkanes, alkenes, alkynes, Cp, Cp*, aryl groups and heterocyclic compounds. These products have three types of catalytic applications: cyclometalation five-membered ring products as catalysts, cyclometalation five-membered ring intermediates as catalyst agents and cyclometalation five-membered ring intermediates with unconventional substrates and as catalyst actions. Because of the high functionality of these products, the applications of them have been increasing not only as the metathesis in the first and second generations of Hoveyda-Grubbs catalysts but also as in chiral reactions, cross-coupling reactions and polymerization reactions. The above cyclometalation products have been utilized for the production in many industrial fields such as pharmaceuticals, OLEDs, carbon dioxide utilizations, dye-sensitizer solar cells and sensors. We expect that these products would be used for the development of further new industrial products.展开更多
A series of hydroxyl-terminated polyethylenes(HTPE)bearing various functional side groups(e.g.carboxyl,ester and butane groups)were synthesized by the combination of ring opening metathesis polymerization(ROMP)and vis...A series of hydroxyl-terminated polyethylenes(HTPE)bearing various functional side groups(e.g.carboxyl,ester and butane groups)were synthesized by the combination of ring opening metathesis polymerization(ROMP)and visible light photocatalytic thiol-ene reaction.The products are named as a,w-dihydroxyl-polyllpropionyloxythio)methinetrimethylene](HTPECarboxy),a,w dihydroxy-poly(methylpropionatethio)methinetrimethylene](HTPEeser)and a,wdihydroxyl-poly[(butylthio)methinetrimethylene](HTPEbutane)respectively.The investigation of ROMP indicated that the molecular weight of resultant hydroxy-terminated polybutadiene(HTPB)can be tailored by varying the feed ratios of monomer to chain transfer agent(CTA).The exploration of the photocatalytic thiol-ene reaction between HTPB precursor and methyl-3-mercaptopropionate revealed that blue light as well as oxygen accelerated the reaction.1H-NMR and 13C-NMR results verified all the double bonds in HTPB can be modified,and the main chain of resultant polymer can be considered as polyethylene.Subsequently,relationship between the structure of side groups and the thermal properties of functional PEs was studied.And the results suggested that the Tg was in the order of HTPEbuane<HTPEester<HTPEarboxy+.Greater interaction between side groups resulted in higher Tg.Moreover,all the functional PE samples exhibited poor thermostability as compared to HTPB.Finally,the promising applications for functional PEs were explored.HTPEcarboxy1 can be utilized as a smart material with pH-responsive properties due to its pH-dependent ionization of carboxyl side groups.HTPEbutane can be employed as a macro-initiator for building the triblock copolymer due to the presence of active hydroxyl end groups.HTPEester can serve as a plasticizer for PVC which can enhance the ductilityt of PVC without obviously sacrificing strength.展开更多
A novel diselenide-containing crown ether(BC7Se_(2))was fabricated,which can polymerize to form cyclic oligomers through intermolecular dynamic covalent reaction by irradiation of visible light.The size and distributi...A novel diselenide-containing crown ether(BC7Se_(2))was fabricated,which can polymerize to form cyclic oligomers through intermolecular dynamic covalent reaction by irradiation of visible light.The size and distribution of oligomers are related to the monomer concentration.The decomposition reaction of oligomers is controlled by topology and solvents.Furthermore,potassium cation can inhibit the polymerization of BC7Se_(2)and accelerate the decomposition of oligomers.展开更多
基金This work was supported by Research Foundation of Key Laboratory of Neutron Physics(Grant No.2015BB03)National Natural Science Foundation of China(Grant Nos.11774247 and 21301122)+2 种基金Science Foundation for Excellent Youth Scholars of Sichuan University(Grant No.2015SCU04A04)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20130181120116)Premier Research Institution for Ultrahigh-pressure Sciences(PRIUS).
文摘High-pressure solid-state metathesis(HPSSM)reaction is an effective route to novel metal nitrides.A recent advance in HPSSM reactions is presented for a number of examples,including 3d transition metal nitrides(ε-Fe_(3)N,ε-Fe_(3-x)Co_(x)N,CrN,and Co_(4)N_(x)),4d transition metal nitrides(MoNx),and 5d transition metal nitrides(Re_(3)N,WN_(x)).Thermodynamic investigations based on density functional theory(DFT)calculations on several typical HPSSM reactions between metal oxides and boron nitride indicate that the pressure could reduce the reaction enthalpy △H.High-pressure confining environment thermodynamically favors an ion-exchange process between metal atom and boron atom,and successfully results in the formation of well-crystalized metal nitrides with potential applications.
文摘以三氟甲基磺酰氯为原料,经胺化、成盐、酸碱中和、复分解置换反应合成了无水双(三氟甲基磺酰)亚胺锂。通过研究温度、溶剂、反应时间、氨气通入速率等对反应产率的影响,优化了三氟甲基磺酰胺与双(三氟甲基磺酰)亚胺钾的合成条件。得到三氟甲基磺酰胺的最优合成条件为以乙腈为溶剂,氨气通入速度为0.8 m L/min,反应时间为1 h,反应温度为-10^-5℃;双(三氟甲基磺酰)亚胺钾的最优合成条件为反应时间3 h,反应温度-10^-5℃。利用FT-IR、13C-NMR和ICP对中间产物与最终产物进行了表征。双(三氟甲基磺酰)亚胺锂的产率为72.65%。
基金theNationalNaturalScienceFoundationofChina (No .2 992 5 10 1)andtheMajorStateBasicResearchDevelop mentProgramofChina (No .G19990 6 480 0 )
文摘Reactions of [Cp2Ln(μ-Cl)]2 (Cp= η5-C5H5, Ln = Nd, Yb, Dy, Gd, Er) with an equivalent of [(THF)3LiE2C2Bi0H10Li. (THF)]2 (E= S, Se) in THF afforded the dinuclear sandwich complexes of formula [CP2LnE2C2B10H10]2[LI(THF)4]2[E = S, Ln=Nd (1a), Yb (2a), Dy (3a), Gd (4a), Er (5a); E=Se, Ln=Nd (1b), Yb (2b), Dy (3b), Gd (4b), Er (5b)]. The molecular structures of complexes la, 2a and 2b were determined by the single crystal X-ray structure analyses. Two lanthanide atoms are connected by a pair chalcogen (η1, η2-E2C2B10H10) bridging ligands and the central Ln2E2 four membered ring is not planar.
文摘The five-membered ring products and intermediates of cyclometalation reactions are very easily synthesized via donation from a hetero atom to a metal atom, which leads to the very high functionality of the product. This functionality is caused by the donation of the hetero atom and various types of metal atoms, halogen atom and other ligands such as alkanes, alkenes, alkynes, Cp, Cp*, aryl groups and heterocyclic compounds. These products have three types of catalytic applications: cyclometalation five-membered ring products as catalysts, cyclometalation five-membered ring intermediates as catalyst agents and cyclometalation five-membered ring intermediates with unconventional substrates and as catalyst actions. Because of the high functionality of these products, the applications of them have been increasing not only as the metathesis in the first and second generations of Hoveyda-Grubbs catalysts but also as in chiral reactions, cross-coupling reactions and polymerization reactions. The above cyclometalation products have been utilized for the production in many industrial fields such as pharmaceuticals, OLEDs, carbon dioxide utilizations, dye-sensitizer solar cells and sensors. We expect that these products would be used for the development of further new industrial products.
基金the financial support from the National Natural Science Foundation of China(Nos.51803111,31670596 and 11904220)the Natural Science Foundation of Shaanxi province(Nos.2019JQ-786 and 2020GY-232).
文摘A series of hydroxyl-terminated polyethylenes(HTPE)bearing various functional side groups(e.g.carboxyl,ester and butane groups)were synthesized by the combination of ring opening metathesis polymerization(ROMP)and visible light photocatalytic thiol-ene reaction.The products are named as a,w-dihydroxyl-polyllpropionyloxythio)methinetrimethylene](HTPECarboxy),a,w dihydroxy-poly(methylpropionatethio)methinetrimethylene](HTPEeser)and a,wdihydroxyl-poly[(butylthio)methinetrimethylene](HTPEbutane)respectively.The investigation of ROMP indicated that the molecular weight of resultant hydroxy-terminated polybutadiene(HTPB)can be tailored by varying the feed ratios of monomer to chain transfer agent(CTA).The exploration of the photocatalytic thiol-ene reaction between HTPB precursor and methyl-3-mercaptopropionate revealed that blue light as well as oxygen accelerated the reaction.1H-NMR and 13C-NMR results verified all the double bonds in HTPB can be modified,and the main chain of resultant polymer can be considered as polyethylene.Subsequently,relationship between the structure of side groups and the thermal properties of functional PEs was studied.And the results suggested that the Tg was in the order of HTPEbuane<HTPEester<HTPEarboxy+.Greater interaction between side groups resulted in higher Tg.Moreover,all the functional PE samples exhibited poor thermostability as compared to HTPB.Finally,the promising applications for functional PEs were explored.HTPEcarboxy1 can be utilized as a smart material with pH-responsive properties due to its pH-dependent ionization of carboxyl side groups.HTPEbutane can be employed as a macro-initiator for building the triblock copolymer due to the presence of active hydroxyl end groups.HTPEester can serve as a plasticizer for PVC which can enhance the ductilityt of PVC without obviously sacrificing strength.
基金financial support from the National Natural Science Foundation of China(Nos.21901210,21901209,22071196,22007078)Natural Science Foundation of Shaanxi Province of China(No.2019JQ-626)+3 种基金Postdoctoral Innovative Talents Supporting Project of China(No.BX20180255)Key R&D Program of Shaanxi Province(Nos.2019KW-031,2019KW-038)Fundamental Research Funds for the Central Universities(Nos.3102019smxy001,3102018zy051,3102018jcc007,3102017OQD045,3102017OQD040,3102017OQD115,3102019ghxm005)State Key Laboratory of Solidification Processing in NPU(No.SKLSP201817)。
文摘A novel diselenide-containing crown ether(BC7Se_(2))was fabricated,which can polymerize to form cyclic oligomers through intermolecular dynamic covalent reaction by irradiation of visible light.The size and distribution of oligomers are related to the monomer concentration.The decomposition reaction of oligomers is controlled by topology and solvents.Furthermore,potassium cation can inhibit the polymerization of BC7Se_(2)and accelerate the decomposition of oligomers.