The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phas...The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phase. The corrosion behavior of this composite was compared to its monolithic counterpart and other Fe-based alloys such as 304L and 2304L stainless steels. The corrosion resistance of MGMCs in H2SO4 solution shows inferior to that of other Fe-based alloys. Experiments suggest that Fe-BMGs samples possess better corrosion resistance property than that of Fe-MGMCs. The possible underlying reasons can be the inhomogeneity induced by the precipitation of a-Fe dendrites in the MGMCs.展开更多
Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a...Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.展开更多
In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the ...In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.展开更多
The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,resp...The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,respectively.No serration events occur in both MGMCs and BMGs during compression tests at the strain rate of 2×10^-2 s^-1.When deformed at the strain rate of 2×10^-3 s^-1,the BMG displays a larger plasticity,which is due to the larger serration events followed by a series of small serrations caused by the continuous movement of free volume.The amplitudes and elastic-energy densities increase with increasing the strain rates owing to many serrations in MGMCs.It is deduced that the Young′s modulus decreases from the normalized stress drop and fluctuations are observed on stressstrain curves,which is attributed to a lower coefficient according to the stick-slip model.展开更多
The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation be...The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation behaviors of metallic glass matrix composites are closely related to their plastic deformation states.The elastic deformation behaviors of Cu48-xZr48Al4Nbx(x=0,3at.%)metallic glass matrix composites(MGMCs)with different crystallization degrees were investigated using an in-situ digital image correlation(DIC)technique during tensile process.With decreasing crystallization degree,MGMC exhibits obvious elastic deformation ability and an increased tensile fracture strength.The notable tensile elasticity is attributed to the larger shear strain heterogeneity emerging on the surface of the sample.This finding has implications for the development of MGMCs with excellent tensile properties.展开更多
Ternary Zr49Cu44Al7 metallic glass matrix composite rods with CuZr nano-phase,exhibiting an elastic strain of 1.6% and a high strength of 1.78 GPa,have been manufactured. The structural evaluation of the ternary metal...Ternary Zr49Cu44Al7 metallic glass matrix composite rods with CuZr nano-phase,exhibiting an elastic strain of 1.6% and a high strength of 1.78 GPa,have been manufactured. The structural evaluation of the ternary metallic glass matrix composite under high pressure has been investigated using angle dispersive X-ray diffraction with a synchrotron radiation source. The investigation shows that the amorphous matrix structure is stable under pressures up to 40.8 GPa at room temperature. No pressure induced CuZr nano-phase disappearing or growing was detected. According to the Bridgeman equation of state,the bulk modulus B0 =115.2 GPa has been obtained.展开更多
基金Item Sponsored by National Natural Science Foundation of China(51401141)Science Foundation of Shanxi Province of China(2013011010-1)Youth Science Foundation of Shanxi Province of China(2014021017-3)
文摘The corrosion behavior study was conducted on a novel Fe77 Mo5P9C7.5 B1.5 in-situ metallic glass matrix composite (MGMC). This composite sample was developed by introduction of bcc a-Fe dendrites as reinforcing phase. The corrosion behavior of this composite was compared to its monolithic counterpart and other Fe-based alloys such as 304L and 2304L stainless steels. The corrosion resistance of MGMCs in H2SO4 solution shows inferior to that of other Fe-based alloys. Experiments suggest that Fe-BMGs samples possess better corrosion resistance property than that of Fe-MGMCs. The possible underlying reasons can be the inhomogeneity induced by the precipitation of a-Fe dendrites in the MGMCs.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50225103, 50471001 and 50631010).
文摘Mg65Cu20Zn5Y9Zr1 bulk metallic glass matrix composite with a diameter of 2 mm was produced by copper mold casting. Upon cooling the Mg65Cu20Zn5Y9Zr1 melt, Mg2Cu acicular crystalline phase precipitates uniformly with a size of about 20 μm long and 1 μm thick while the remaining melt undergoes glass transition. Room temperature compression tests revealed that the high fracture strength up to 830 MPa and the plastic strain of 2.4% before failure are obtained for the Mg-based bulk metallic glass matrix composite. The formation of the Mg2Cu phase was proposed to contribute to high strength and plastic deformation of the material.
基金supported by the Science and Technology Development Fund (2015B0201025)the key subject "Computational Solid Mechanics" of China Academy of Engineering Physics+1 种基金the National Outstanding Young Scientists Foundation of China (11225213)the National Natural Science Foundation of China (11521062,11602258)
文摘In the present manuscript numerical analysis on the ballistic performance of a tungsten particle/metallic glass matrix(WP/MG) composite rod is conducted by integrating with related experimental investigations. In the corresponding finite element method(FEM) simulations a modified coupled thermomechanical constitutive model is employed to describe the mechanical properties of metallic glass(MG)matrix, and geometrical models of the WP/MG composite rod are established based on its inner structure. The deformation and failure characteristics of the rod and target materials are analyzed in detail,and the influences of various factors on the ballistic performance of the WP/MG composite long rod are discussed. Related analysis demonstrates that the penetrating performance of the WP/MG rod is similar to that of the tungsten fiber/metallic glass matrix(WF/MG) composite long rod, i.e., a "self-sharpening" behavior also occurs during the penetration process, and correspondingly its penetrating capability is better than that of the tungsten heavy alloy(WHA) rod. However, the mass erosion manner of the WP/MG rod is different and the erosion is relatively severe, thus its penetrating capability is a little lower compared with that of the WF/MG one. Moreover, the impact velocity and the target strength have significant influences on the ballistic performance of the WP/MG composite rod, whereas the effect of initial nose shape is very little.
基金Item Sponsored by National Natural Science Foundation of China(51371122,51471025,51210105006)Program for Innovative Talents of Higher Learning Institutions of Shanxi of China(2013)Youth Natural Science Foundation of Shanxi Province of China(2015021005)
文摘The metallic glass matrix composites(MGMCs)and bulk metallic glasses(BMGs)were studied by statistical analysis during plastic deformation at the strain rates of 2×10^-2,2×10^-3,and 2×10^-4 s^-1,respectively.No serration events occur in both MGMCs and BMGs during compression tests at the strain rate of 2×10^-2 s^-1.When deformed at the strain rate of 2×10^-3 s^-1,the BMG displays a larger plasticity,which is due to the larger serration events followed by a series of small serrations caused by the continuous movement of free volume.The amplitudes and elastic-energy densities increase with increasing the strain rates owing to many serrations in MGMCs.It is deduced that the Young′s modulus decreases from the normalized stress drop and fluctuations are observed on stressstrain curves,which is attributed to a lower coefficient according to the stick-slip model.
基金the financial support by the National Natural Science Foundation of China(51371078,51671067)
文摘The room temperature brittleness has been a long standing problem in bulk metallic glasses realm.This has seriously limited the application potential of metallic glasses and their composites.The elastic deformation behaviors of metallic glass matrix composites are closely related to their plastic deformation states.The elastic deformation behaviors of Cu48-xZr48Al4Nbx(x=0,3at.%)metallic glass matrix composites(MGMCs)with different crystallization degrees were investigated using an in-situ digital image correlation(DIC)technique during tensile process.With decreasing crystallization degree,MGMC exhibits obvious elastic deformation ability and an increased tensile fracture strength.The notable tensile elasticity is attributed to the larger shear strain heterogeneity emerging on the surface of the sample.This finding has implications for the development of MGMCs with excellent tensile properties.
基金supported by the National Natural Science Foundation of China (50731005 and 50821001)the National Basic Research Program of China (2010CB731600)
文摘Ternary Zr49Cu44Al7 metallic glass matrix composite rods with CuZr nano-phase,exhibiting an elastic strain of 1.6% and a high strength of 1.78 GPa,have been manufactured. The structural evaluation of the ternary metallic glass matrix composite under high pressure has been investigated using angle dispersive X-ray diffraction with a synchrotron radiation source. The investigation shows that the amorphous matrix structure is stable under pressures up to 40.8 GPa at room temperature. No pressure induced CuZr nano-phase disappearing or growing was detected. According to the Bridgeman equation of state,the bulk modulus B0 =115.2 GPa has been obtained.