An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used t...An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used to represent the thermodynamics of binary alloys at higher concentrations. The present results reveal that it is an improper way to evaluate first and second-order interaction parameters simultaneously from the experimental data in the range of higher concentrations due to an inadequate accuracy Of high temperature experiments.展开更多
The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the...The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the ther-modynamic properties of solutes in the Zn-Pb-In and Zn-Sn-Cd-Pb dilute solutions using only the binary infinitedilute activity coefficients, and the predicted values are in good agreement with the experimental data of the dilutesolutions.展开更多
文摘An approach of describing the thermodynamics of binary alloys is developed which is based on an exact expression of infinite MacLaurin series of molar excess Gibbs free energy. This new approach is successfully used to represent the thermodynamics of binary alloys at higher concentrations. The present results reveal that it is an improper way to evaluate first and second-order interaction parameters simultaneously from the experimental data in the range of higher concentrations due to an inadequate accuracy Of high temperature experiments.
基金This work was supported bv the Joint Fund of the National Natural Science Foundation of China and Baoshan Steel Complex of Shanghai under Crarit No.50274039.
文摘The coordination numbers in the molecular interaction volume model (MIVM) can be calculated from the commonphysical quantities of pure liquid metals. A notable feature of the model lie in its capability to predict the ther-modynamic properties of solutes in the Zn-Pb-In and Zn-Sn-Cd-Pb dilute solutions using only the binary infinitedilute activity coefficients, and the predicted values are in good agreement with the experimental data of the dilutesolutions.