The results of a theoretical study on the influence of strength of interphase boundaries in metal-ceramic composite on macroscopical characteristics of composite response such as strength, deformation capacity, fractu...The results of a theoretical study on the influence of strength of interphase boundaries in metal-ceramic composite on macroscopical characteristics of composite response such as strength, deformation capacity, fracture energy and fracture pattern are presented. The study was conducted by means of computer-aided simulation by means of movable cellular automaton method taking account of a developed "mesoscopical" structural model of particle-reinforced composite. The strength of interphase boundaries is found to be a key structural factor determining not only the strength properties of metal-ceramic composite, but also the pattern and rate of fracture. The principles for achievement of the high-strength values of particle/binder interfaces in the metal-ceramic composition due to the formation of the wide transition zones (areas of variable chemical composition) at the interphase boundaries are discussed. Simulation results confirm that such transition zones provide a change in fracture mechanism and make the achievement of a high-strength and a high deformation capacity of metal-ceramic composite possible.展开更多
A novel, Ti-6 Al-4 V(Ti64)/Hydroxyapatite(HA at 5% by weight concentration) metal/ceramic composite has been fabricated using electron beam powder bed fusion(EPBF) additive manufacturing(AM): specifically, the commerc...A novel, Ti-6 Al-4 V(Ti64)/Hydroxyapatite(HA at 5% by weight concentration) metal/ceramic composite has been fabricated using electron beam powder bed fusion(EPBF) additive manufacturing(AM): specifically, the commercial electron beam melting(EBM?) process. In addition to solid Ti64 and Ti64/5% HA samples, four different unit cell(model) open-cellular mesh structures for the Ti64/5% HA composite were fabricated having densities ranging from 0.68 to 1.12 g/cm^3, and corresponding Young's moduli ranging from 2.9 to 8.0 GPa, and compressive strengths ranging from ~3 to 11 MPa. The solid Ti64/5%HA composite exhibited an optimal tensile strength of 123 MPa, and elongation of 5.5% in contrast to a maximum compressive strength of 875 MPa. Both the solid composite and mesh samples deformed primarily by brittle deformation, with the mesh samples exhibiting erratic, brittle crushing. Solid, EPBF-fabricated Ti64 samples had a Vickers microindentation hardness of 4.1 GPa while the Ti64/5%HA solid composite exhibited a Vickers microindentation hardness of 6.8 GPa. The lowest density Ti64/5%HA composite mesh strut sections had a Vickers microindentation hardness of 7.1 GPa. Optical metallography(OM) and scanning electron microscopy(SEM) analysis showed the HA dispersoids to be highly segregated along domain or grain boundaries, but homogeneously distributed along alpha(hcp) platelet boundaries within these domains in the Ti64 matrix for both the solid and mesh composites. The alpha platelet width varied from ~5 μm in the EPBF-fabricated Ti64 to ~1.1 m for the Ti64/5%HA mesh strut. The precursor HA powder diameter averaged 5 μm, in contrast to the dispersed HA particle diameters in the Ti64/5%HA composite which averaged 0.5 m. This work highlights the use of EPBF AM as a novel process for fabrication of a true composite structure, consisting of a Ti64 matrix and interspersed and exposed HA domains, which to the authors' knowledge has not been reported before. The results also illustrate the prospects not only for fabricating 展开更多
基金The investigation has been carried out within the SB RAS Program Ⅲ.20.2 for Basic Researchat partial financial support of the RFBR Grant No.11-08-12069-ofi-m-2011+1 种基金the Project No.5 of the Belarus NASSB RAS Program for Joint Basic Research
文摘The results of a theoretical study on the influence of strength of interphase boundaries in metal-ceramic composite on macroscopical characteristics of composite response such as strength, deformation capacity, fracture energy and fracture pattern are presented. The study was conducted by means of computer-aided simulation by means of movable cellular automaton method taking account of a developed "mesoscopical" structural model of particle-reinforced composite. The strength of interphase boundaries is found to be a key structural factor determining not only the strength properties of metal-ceramic composite, but also the pattern and rate of fracture. The principles for achievement of the high-strength values of particle/binder interfaces in the metal-ceramic composition due to the formation of the wide transition zones (areas of variable chemical composition) at the interphase boundaries are discussed. Simulation results confirm that such transition zones provide a change in fracture mechanism and make the achievement of a high-strength and a high deformation capacity of metal-ceramic composite possible.
文摘A novel, Ti-6 Al-4 V(Ti64)/Hydroxyapatite(HA at 5% by weight concentration) metal/ceramic composite has been fabricated using electron beam powder bed fusion(EPBF) additive manufacturing(AM): specifically, the commercial electron beam melting(EBM?) process. In addition to solid Ti64 and Ti64/5% HA samples, four different unit cell(model) open-cellular mesh structures for the Ti64/5% HA composite were fabricated having densities ranging from 0.68 to 1.12 g/cm^3, and corresponding Young's moduli ranging from 2.9 to 8.0 GPa, and compressive strengths ranging from ~3 to 11 MPa. The solid Ti64/5%HA composite exhibited an optimal tensile strength of 123 MPa, and elongation of 5.5% in contrast to a maximum compressive strength of 875 MPa. Both the solid composite and mesh samples deformed primarily by brittle deformation, with the mesh samples exhibiting erratic, brittle crushing. Solid, EPBF-fabricated Ti64 samples had a Vickers microindentation hardness of 4.1 GPa while the Ti64/5%HA solid composite exhibited a Vickers microindentation hardness of 6.8 GPa. The lowest density Ti64/5%HA composite mesh strut sections had a Vickers microindentation hardness of 7.1 GPa. Optical metallography(OM) and scanning electron microscopy(SEM) analysis showed the HA dispersoids to be highly segregated along domain or grain boundaries, but homogeneously distributed along alpha(hcp) platelet boundaries within these domains in the Ti64 matrix for both the solid and mesh composites. The alpha platelet width varied from ~5 μm in the EPBF-fabricated Ti64 to ~1.1 m for the Ti64/5%HA mesh strut. The precursor HA powder diameter averaged 5 μm, in contrast to the dispersed HA particle diameters in the Ti64/5%HA composite which averaged 0.5 m. This work highlights the use of EPBF AM as a novel process for fabrication of a true composite structure, consisting of a Ti64 matrix and interspersed and exposed HA domains, which to the authors' knowledge has not been reported before. The results also illustrate the prospects not only for fabricating