With the increasing advance of fifth generation(5G)network and the gradual expansion of digital devices,harsh working environment for electronic devices has spawned higher requirements for microwave absorbing material...With the increasing advance of fifth generation(5G)network and the gradual expansion of digital devices,harsh working environment for electronic devices has spawned higher requirements for microwave absorbing materials(MAMs).Since both the electromagnetic response and energy conversion character vary with temperature,to achieve temperature insensitive microwave absorption behaviour in wide temperature range has become extremely challenging.In this work,structured metacomposites containing sub-wavelength reduced graphene oxide(RGO)@carbon spheres were fabricated,and the microwave absorption was further improved through structural and composition design of the RGO@carbon units.Due to the unique anti-reflection effect on microwave of the metacomposites,the temperature-insensitive electromagnetic performance at elevated temperature could be exhibited.Moreover,both the dielectric relaxation behaviour and microwave absorption proformance of the system could be further increased.As a result,the effective absorption bandwidth(reflection loss(RL)<−10 dB)of the metacomposites with only 3.0 wt.%filler content could cover the entire X-band(8.2–12.4 GHz)frequency ranging from 298 to 473K.The metacomposite proposed in this work provides a“de-correlating”strategy to break the linkage between microwave absorption behaviour and temperature,which offers an interesting plateau for fabricating efficient high-temperature microwave absorption structures with tunable and designable advantages.展开更多
CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric res...CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites.展开更多
Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideratio...Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.展开更多
Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(...Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.展开更多
Ⅰ. INTRODUCTION The γω-calculus foundation, on which the generalized metacomposition rule of generalized recursive schemas is based, is discussed in this report. Generalized recursive schema is the generalization o...Ⅰ. INTRODUCTION The γω-calculus foundation, on which the generalized metacomposition rule of generalized recursive schemas is based, is discussed in this report. Generalized recursive schema is the generalization of recursive schema from defining a set展开更多
Ⅰ. INTRODUCTION It seems hopeful that γω-calculus would become the most general theoretical foundation of semantics for functional programming languages (at least for the ones without types). In this note, for the ...Ⅰ. INTRODUCTION It seems hopeful that γω-calculus would become the most general theoretical foundation of semantics for functional programming languages (at least for the ones without types). In this note, for the formal functional programming language FFP, the γω-展开更多
An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on...An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.展开更多
基金the National Natural Science Foundation of China(Nos.U1704253 and 21671057).
文摘With the increasing advance of fifth generation(5G)network and the gradual expansion of digital devices,harsh working environment for electronic devices has spawned higher requirements for microwave absorbing materials(MAMs).Since both the electromagnetic response and energy conversion character vary with temperature,to achieve temperature insensitive microwave absorption behaviour in wide temperature range has become extremely challenging.In this work,structured metacomposites containing sub-wavelength reduced graphene oxide(RGO)@carbon spheres were fabricated,and the microwave absorption was further improved through structural and composition design of the RGO@carbon units.Due to the unique anti-reflection effect on microwave of the metacomposites,the temperature-insensitive electromagnetic performance at elevated temperature could be exhibited.Moreover,both the dielectric relaxation behaviour and microwave absorption proformance of the system could be further increased.As a result,the effective absorption bandwidth(reflection loss(RL)<−10 dB)of the metacomposites with only 3.0 wt.%filler content could cover the entire X-band(8.2–12.4 GHz)frequency ranging from 298 to 473K.The metacomposite proposed in this work provides a“de-correlating”strategy to break the linkage between microwave absorption behaviour and temperature,which offers an interesting plateau for fabricating efficient high-temperature microwave absorption structures with tunable and designable advantages.
基金This work was financially supported by the National Natural Science Foundation of China(No.52205593)the Fund of Natural Science Special(Special Post)Research Foundation of Guizhou University(No.2023-032)the Platform of Science and Technology and Talent Team Plan of Guizhou Province(No.GCC[2023]007).
文摘CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites.
基金sponsored by the National Natural Science Foundation of China (Grant No.51803119,51871146 and 51771108)the Innovation Program of Shanghai Municipal Education Commission (Grant No.2019-01-07-00-10-E00053)+1 种基金"Chenguang Program" supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (Grant No.18CG56)the Science and Technology Commission of Shanghai Municipality (Grant No.18DZ1112902,No.18DZ1100802)
文摘Recently,increasing attention has been concentrated on negative permittivity with the development of the emerging metamaterials composed of periodic array structures.However,taking facile preparation into consideration,it is important to achieve negative permittivity behavior based on materials'intrinsic properties rather than their artificially periodic structures.In this paper,we proposed to fabricate the percolating composites with copper dispersed in epoxy(EP)resin by a polymerization method to realize the negative permittivity behavior.When Cu content in the composites reached to 80 wt%,the conductivity abruptly went up by three orders of magnitudes,suggesting a percolation behavior.Below the percolation threshold,the conductivity spectra conform to Jonscher's power law;when the Cu/EP composites reached to percolating state,the conductivity gradually reduced in high frequency region due to the skin effect.It is indicated that the conductive mechanism changed from hopping conduction to electron conduction.In addition,the permittivity did not increase monotonously with the increase of Cu content in the vicinity of percolation threshold,due to the presence of leakage current.Meanwhile,the negative permittivity conforming to Drude model was observed above the percolation threshold.Further investigation revealed that there was a constitutive relationship between the permittivity and the reactance.When conductive fillers are slightly above the percolation threshold,the inductive characteristic derived from conductive percolating network leads to the negative permittivity.Such epsilon-negative materials can potentially be applied in novel electrical devices,such as high-power microwave filters,stacked capacitors,negative capacitance field effect transistors and coil-free resonators.In addition,the design strategy based on percolating composites provides an approach to epsilon-negative materials.
基金financially supported by the National Natural Science Foundation of China (Nos.52101176,11604060,22005071 and 52101010)the China Postdoctoral Science Foundation (No.2020M671992)+3 种基金Guangdong Basic and Applied Basic Research Foundation (No.2021A1515110883)Guizhou Provincial Science and Technology Projects (No.ZK[2022]General044)the Cultivation Programs Research Foundation of Guizhou University (No.2019-64)support of the Fund of Natural Science Special (Special Post)Research Foundation of Guizhou University[Grant No.2023-032]。
文摘Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus.
文摘Ⅰ. INTRODUCTION The γω-calculus foundation, on which the generalized metacomposition rule of generalized recursive schemas is based, is discussed in this report. Generalized recursive schema is the generalization of recursive schema from defining a set
文摘Ⅰ. INTRODUCTION It seems hopeful that γω-calculus would become the most general theoretical foundation of semantics for functional programming languages (at least for the ones without types). In this note, for the formal functional programming language FFP, the γω-
基金Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province,China(No.MTC2021-02)。
文摘An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.