Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challe...Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challenges.Authentication and access control are two notable challenges for any IIoT based industrial deployment.Any IoT based Industry 4.0 enterprise designs networks between hundreds of tiny devices such as sensors,actuators,fog devices and gateways.Thus,articulating a secure authentication protocol between sensing devices or a sensing device and user devices is an essential step in IoT security.In this paper,first,we present cryptanalysis for the certificate-based scheme proposed for a similar environment by Das et al.and prove that their scheme is vulnerable to various traditional attacks such as device anonymity,MITM,and DoS.We then put forward an interdevice authentication scheme using an ECC(Elliptic Curve Cryptography)that is highly secure and lightweight compared to other existing schemes for a similar environment.Furthermore,we set forth a formal security analysis using the random oracle-based ROR model and informal security analysis over the Doleve-Yao channel.In this paper,we present comparison of the proposed scheme with existing schemes based on communication cost,computation cost and security index to prove that the proposed EBAKE-SE is highly efficient,reliable,and trustworthy compared to other existing schemes for an inter-device authentication.At long last,we present an implementation for the proposed EBAKE-SE using MQTT protocol.展开更多
Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,huma...Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.展开更多
基金supported by the Researchers Supporting Project(No.RSP-2021/395)King Saud University,Riyadh,Saudi Arabia.
文摘Industrial IoT(IIoT)aims to enhance services provided by various industries,such as manufacturing and product processing.IIoT suffers from various challenges,and security is one of the key challenge among those challenges.Authentication and access control are two notable challenges for any IIoT based industrial deployment.Any IoT based Industry 4.0 enterprise designs networks between hundreds of tiny devices such as sensors,actuators,fog devices and gateways.Thus,articulating a secure authentication protocol between sensing devices or a sensing device and user devices is an essential step in IoT security.In this paper,first,we present cryptanalysis for the certificate-based scheme proposed for a similar environment by Das et al.and prove that their scheme is vulnerable to various traditional attacks such as device anonymity,MITM,and DoS.We then put forward an interdevice authentication scheme using an ECC(Elliptic Curve Cryptography)that is highly secure and lightweight compared to other existing schemes for a similar environment.Furthermore,we set forth a formal security analysis using the random oracle-based ROR model and informal security analysis over the Doleve-Yao channel.In this paper,we present comparison of the proposed scheme with existing schemes based on communication cost,computation cost and security index to prove that the proposed EBAKE-SE is highly efficient,reliable,and trustworthy compared to other existing schemes for an inter-device authentication.At long last,we present an implementation for the proposed EBAKE-SE using MQTT protocol.
基金supported partially by AirForce Research Laboratory,the Office of the Secretary of Defense(OSD)(FA8750-15-2-0116)the National Science Foundation(NSF)(1832110)the National Institute of Aerospace and Langley(C16-2B00-NCAT)。
文摘Timely investigating post-disaster situations to locate survivors and secure hazardous sources is critical,but also very challenging and risky.Despite first responders putting their lives at risk in saving others,human-physical limits cause delays in response time,resulting in fatality and property damage.In this paper,we proposed and implemented a framework intended for creating collaboration between heterogeneous unmanned vehicles and first responders to make search and rescue operations safer and faster.The framework consists of unmanned aerial vehicles(UAVs),unmanned ground vehicles(UGVs),a cloud-based remote control station(RCS).A light-weight message queuing telemetry transport(MQTT)based communication is adopted for facilitating collaboration between autonomous systems.To effectively work under unfavorable disaster conditions,antenna tracker is developed as a tool to extend network coverage to distant areas,and mobile charging points for the UAVs are also implemented.The proposed framework’s performance is evaluated in terms of end-to-end delay and analyzed using architectural analysis and design language(AADL).Experimental measurements and simulation results show that the adopted communication protocol performs more efficiently than other conventional communication protocols,and the implemented UAV control mechanisms are functioning properly.Several scenarios are implemented to validate the overall effectiveness of the proposed framework and demonstrate possible use cases.