Oxy-combustion is a promising carbon-capture technology,but atmospheric-pressure oxy-combustion has a relatively low net efficiency,limiting its application in power plants.In pressurized oxycombustion(POC),the boiler...Oxy-combustion is a promising carbon-capture technology,but atmospheric-pressure oxy-combustion has a relatively low net efficiency,limiting its application in power plants.In pressurized oxycombustion(POC),the boiler,air separation unit,flue gas recirculation unit,and CO_(2)purification and compression unit are all operated at elevated pressure;this makes the process more efficient,with many advantages over atmospheric pressure,such as low NO_(x)emissions,a smaller boiler size,and more.POC is also more promising for industrial application and has attracted widespread research interest in recent years.It can produce high-pressure CO_(2)with a purity of approximately 95%,which can be used directly for enhanced oil recovery or geo-sequestration.However,the pollutant emissions must meet the standards for carbon capture,storage,and utilization.Because of the high oxygen and moisture concentrations in POC,the formation of acids via the oxidation and solution of SO_(x)and NO_(x)can be increased,causing the corrosion of pipelines and equipment.Furthermore,particulate matter(PM)and mercury emissions can harm the environment and human health.The main distinction between pressurized and atmospheric-pressure oxy-combustion is the former’s elevated pressure;thus,the effect of this pressure on the pollutants emitted from POC—including SO_(x),NO_(x),PM,and mercury—must be understood,and effective control methodologies must be incorporated to control the formation of these pollutants.This paper reviews recent advances in research on SO_(x),NO_(x),PM,and mercury formation and control in POC systems that can aid in pollutant control in such systems.展开更多
Sample seawater containing trace methyl mercury was acidified and adsorbed on hydrosulfo-cotton, washed with hydrochloric acid, extracted by benzene and dried, and then determined by a gas chromatograph with electron ...Sample seawater containing trace methyl mercury was acidified and adsorbed on hydrosulfo-cotton, washed with hydrochloric acid, extracted by benzene and dried, and then determined by a gas chromatograph with electron capture detector. This method, which can detect a minimum concentration of 0.1×10-10%, can be used to monitor the 10-10% content of methyl mercury in seawater.展开更多
基金support of the National Key Research and Development Program of China(2022YFE0206600)the National Natural Science Foundation of China(52376125)Fundamental Research Funds for the Central Universities.
文摘Oxy-combustion is a promising carbon-capture technology,but atmospheric-pressure oxy-combustion has a relatively low net efficiency,limiting its application in power plants.In pressurized oxycombustion(POC),the boiler,air separation unit,flue gas recirculation unit,and CO_(2)purification and compression unit are all operated at elevated pressure;this makes the process more efficient,with many advantages over atmospheric pressure,such as low NO_(x)emissions,a smaller boiler size,and more.POC is also more promising for industrial application and has attracted widespread research interest in recent years.It can produce high-pressure CO_(2)with a purity of approximately 95%,which can be used directly for enhanced oil recovery or geo-sequestration.However,the pollutant emissions must meet the standards for carbon capture,storage,and utilization.Because of the high oxygen and moisture concentrations in POC,the formation of acids via the oxidation and solution of SO_(x)and NO_(x)can be increased,causing the corrosion of pipelines and equipment.Furthermore,particulate matter(PM)and mercury emissions can harm the environment and human health.The main distinction between pressurized and atmospheric-pressure oxy-combustion is the former’s elevated pressure;thus,the effect of this pressure on the pollutants emitted from POC—including SO_(x),NO_(x),PM,and mercury—must be understood,and effective control methodologies must be incorporated to control the formation of these pollutants.This paper reviews recent advances in research on SO_(x),NO_(x),PM,and mercury formation and control in POC systems that can aid in pollutant control in such systems.
基金supported by the Ningbo Bureau of Science and Technology(No.2012B82011)the Ningbo Natural Science Foundation(No.2017A610060)+1 种基金the National Natural Science Foundation of China(No.51706114)the China Postdoctoral Science Foundation(No.2016M601942)
文摘Sample seawater containing trace methyl mercury was acidified and adsorbed on hydrosulfo-cotton, washed with hydrochloric acid, extracted by benzene and dried, and then determined by a gas chromatograph with electron capture detector. This method, which can detect a minimum concentration of 0.1×10-10%, can be used to monitor the 10-10% content of methyl mercury in seawater.
基金supported by the National Natural Science Foundation of China(51346001,51106051)Fundamental Research Funds for the Central Universities,China(2016YQ07,2014ZD14)~~