期刊文献+
共找到208篇文章
< 1 2 11 >
每页显示 20 50 100
帮助学生实现口译“信”的标准——记忆心理学在口译教学中的应用 被引量:25
1
作者 鲍晓英 《外语界》 CSSCI 北大核心 2005年第3期37-42,共6页
本文试图将记忆心理学中短时记忆规律应用到口译教学实践,通过对短时记忆的遗忘规律及其容量理论的研究和学习,回答了口译笔记是否必要以及口译接收时的记忆单位是什么这两个问题,指出笔记在口译中,尤其是在段落的口译中是必需的,... 本文试图将记忆心理学中短时记忆规律应用到口译教学实践,通过对短时记忆的遗忘规律及其容量理论的研究和学习,回答了口译笔记是否必要以及口译接收时的记忆单位是什么这两个问题,指出笔记在口译中,尤其是在段落的口译中是必需的,口译的记忆单位应该是“组块”,在段落口译中应以句子为记忆的“组块”,在长句口译中应以构成句子的不同成分为记忆的“组块”。文章同时指出把短时记忆的规律应用刮口译教学中将有助于学生实现口译“信”的标准。 展开更多
关键词 短时记忆遗忘规律 笔记 短时记忆容量极限7±2理论 记忆单位 组块
原文传递
视觉工作记忆中的子系统 被引量:14
2
作者 刘晓平 王兆新 +1 位作者 陈湘川 张达人 《心理学报》 CSSCI CSCD 北大核心 2003年第5期598-603,共6页
由于在预实验中发现记忆复合物体 (multi-featureobjects)时存在子系统优势 ,在本实验中 ,研究了记忆单特征物体 (single -featureobjects)时 ,是否存在子系统优势。被试为中国科学技术大学学生 17人。要求被试记忆同样数目的单特征物... 由于在预实验中发现记忆复合物体 (multi-featureobjects)时存在子系统优势 ,在本实验中 ,研究了记忆单特征物体 (single -featureobjects)时 ,是否存在子系统优势。被试为中国科学技术大学学生 17人。要求被试记忆同样数目的单特征物体 ,条件 1下物体属性相同 ,条件 2下物体分属两种属性。通过正确率分析 ,条件 2的成绩好于条件 1。这个结果表明 :单特征物体记忆时存在子系统优势。 展开更多
关键词 视觉工作记忆 存储机制 存储单位 物体 特征
下载PDF
基于训练图CNN特征的视频人体动作识别算法 被引量:21
3
作者 曹晋其 蒋兴浩 孙锬锋 《计算机工程》 CAS CSCD 北大核心 2017年第11期234-238,共5页
为将卷积神经网络(CNN)应用到视频理解中,提出一种基于训练图CNN特征的识别算法。利用图像RGB数据识别视频人体动作,使用现有的CNN模型从图像中提取特征,并采用长短记忆单元的递归神经网络进行训练分类,研究CNN模型和隐层的选择、优化... 为将卷积神经网络(CNN)应用到视频理解中,提出一种基于训练图CNN特征的识别算法。利用图像RGB数据识别视频人体动作,使用现有的CNN模型从图像中提取特征,并采用长短记忆单元的递归神经网络进行训练分类,研究CNN模型和隐层的选择、优化、特征矢量化和降维。实验结果表明,与使用图像RGB数据注意力模型的算法和组合长短期记忆模型算法相比,该算法具有更高的准确率。 展开更多
关键词 人体动作识别 深度学习 卷积神经网络 递归神经网络 记忆单元
下载PDF
Machine learning for pore-water pressure time-series prediction:Application of recurrent neural networks 被引量:17
4
作者 Xin Wei Lulu Zhang +2 位作者 Hao-Qing Yang Limin Zhang Yang-Ping Yao 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期453-467,共15页
Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicabilit... Knowledge of pore-water pressure(PWP)variation is fundamental for slope stability.A precise prediction of PWP is difficult due to complex physical mechanisms and in situ natural variability.To explore the applicability and advantages of recurrent neural networks(RNNs)on PWP prediction,three variants of RNNs,i.e.,standard RNN,long short-term memory(LSTM)and gated recurrent unit(GRU)are adopted and compared with a traditional static artificial neural network(ANN),i.e.,multi-layer perceptron(MLP).Measurements of rainfall and PWP of representative piezometers from a fully instrumented natural slope in Hong Kong are used to establish the prediction models.The coefficient of determination(R^2)and root mean square error(RMSE)are used for model evaluations.The influence of input time series length on the model performance is investigated.The results reveal that MLP can provide acceptable performance but is not robust.The uncertainty bounds of RMSE of the MLP model range from 0.24 kPa to 1.12 k Pa for the selected two piezometers.The standard RNN can perform better but the robustness is slightly affected when there are significant time lags between PWP changes and rainfall.The GRU and LSTM models can provide more precise and robust predictions than the standard RNN.The effects of the hidden layer structure and the dropout technique are investigated.The single-layer GRU is accurate enough for PWP prediction,whereas a double-layer GRU brings extra time cost with little accuracy improvement.The dropout technique is essential to overfitting prevention and improvement of accuracy. 展开更多
关键词 Pore-water pressure SLOPE Multi-layer perceptron Recurrent neural networks Long short-term memory Gated recurrent unit
下载PDF
CDMA系统中改进的功率控制算法 被引量:6
5
作者 赵琳 刘剑飞 +1 位作者 于晓然 王现彬 《北京邮电大学学报》 EI CAS CSCD 北大核心 2007年第3期96-99,共4页
提出了一种CDMA系统中改进的自适应功率控制算法.新算法基于信噪比测量,采用卡尔曼滤波器估计信道衰落,采用记忆单元记录功率控制调整指令历史,并综合利用两方面的信息来决定下一次的功率调整步长.该算法在一定程度上可以有效克服信道... 提出了一种CDMA系统中改进的自适应功率控制算法.新算法基于信噪比测量,采用卡尔曼滤波器估计信道衰落,采用记忆单元记录功率控制调整指令历史,并综合利用两方面的信息来决定下一次的功率调整步长.该算法在一定程度上可以有效克服信道中深度衰落和快衰落带来的影响,并改善CDMA系统的性能. 展开更多
关键词 码分多址 自适应算法 功率控制 卡尔曼滤波器 记忆单元
下载PDF
基于长短期记忆网络的公共建筑短期能耗预测模型
6
作者 朱国庆 刘显成 田从祥 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第7期2009-2014,共6页
为了提高公共建筑短期能耗预测的精度、泛化能力和鲁棒性能,提出一种基于长短期记忆网络的公共建筑短期能耗预测模型。使用长短期记忆网络作为公共建筑能耗特征提取器,在不断迭代的过程中保留有价值的能耗历史数据,通过自主学习与自组... 为了提高公共建筑短期能耗预测的精度、泛化能力和鲁棒性能,提出一种基于长短期记忆网络的公共建筑短期能耗预测模型。使用长短期记忆网络作为公共建筑能耗特征提取器,在不断迭代的过程中保留有价值的能耗历史数据,通过自主学习与自组织调整不同时序的输出,并引入灰色系统,减少所需样本数据数量和缩小误差。采用最小乘二法计算输出权值,获得长短期记忆网络下的预测值,将经反归一函数处理后的结果累减计算,得到建筑能耗短期预测值。实验结果证明:本文方法能耗预测能力优秀,可以有效地用于公共建筑能耗预测。 展开更多
关键词 长短期记忆网络 灰色系统 公共建筑能耗 预测模型 反归一化函数 记忆单元
原文传递
基于免疫算法的入侵检测系统特征选择 被引量:5
7
作者 朱永宣 单莘 郭军 《微电子学与计算机》 CSCD 北大核心 2007年第3期20-22,26,共4页
入侵检测系统中的特征选择是一个组合优化问题。为了有效地进行特征选择,提出一种结合进化思想的免疫算法。算法中的免疫记忆单元确保了快速收敛于全局最优解,算法中的均匀交叉操作则体现了进化的思想。提出一个基于神经网络的入侵检测... 入侵检测系统中的特征选择是一个组合优化问题。为了有效地进行特征选择,提出一种结合进化思想的免疫算法。算法中的免疫记忆单元确保了快速收敛于全局最优解,算法中的均匀交叉操作则体现了进化的思想。提出一个基于神经网络的入侵检测系统模型,该模型具有多分类,易于更新系统使其快速适应新型入侵的特点。在KDD CUP’99上的实验表明该算法是有效的。 展开更多
关键词 入侵检测系统 免疫算法 记忆单元 神经网络
下载PDF
改进免疫算法用于图像复原 被引量:4
8
作者 张煜东 吴乐南 《光学精密工程》 EI CAS CSCD 北大核心 2009年第2期417-425,共9页
为了更好地对图像进行超分辨率重建,对传统的正则化方法进行了改进,提出了更符合实际的新模型:加性广义高斯白噪声与各向异性正则化项。为求得新模型的最优解,引入免疫进化算法并做如下改进:引入记忆单元群,使算法并行地运行在两个抗体... 为了更好地对图像进行超分辨率重建,对传统的正则化方法进行了改进,提出了更符合实际的新模型:加性广义高斯白噪声与各向异性正则化项。为求得新模型的最优解,引入免疫进化算法并做如下改进:引入记忆单元群,使算法并行地运行在两个抗体群上;提出一种疫苗的自适应选取及接种方法;将混沌算子作为防僵化算子嵌入。分析与实验表明,基于新模型重建的图像不仅对噪声的类型与方差具有稳健性,而且重建图像的信噪比改善量(ISNR)比传统模型高1.5 dB左右,同时提出的改进免疫进化算法能够更快收敛,所需步数仅是遗传算法的8%,传统免疫算法的40%。结果表明,新模型与改进免疫算法组成的图像超分辨率复原系统具有稳定可靠的性能. 展开更多
关键词 超分辨率 图像复原 直接搜索法 免疫算法 记忆单元 混沌映射
下载PDF
Deep Learning Applied to Computational Mechanics:A Comprehensive Review,State of the Art,and the Classics 被引量:1
9
作者 Loc Vu-Quoc Alexander Humer 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1069-1343,共275页
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl... Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example. 展开更多
关键词 Deep learning breakthroughs network architectures backpropagation stochastic optimization methods from classic to modern recurrent neural networks long short-term memory gated recurrent unit attention transformer kernel machines Gaussian processes libraries Physics-Informed Neural Networks state-of-the-art history limitations challenges Applications to computational mechanics Finite-element matrix integration improved Gauss quadrature Multiscale geomechanics fluid-filled porous media Fluid mechanics turbulence proper orthogonal decomposition Nonlinear-manifold model-order reduction autoencoder hyper-reduction using gappy data control of large deformable beam
下载PDF
NICFS:a file system based on persistent memory and SmartNIC
10
作者 Yitian YANG Youyou LU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第5期675-687,共13页
Emergence of new hardware,including persistent memory and smart network interface card(SmartNIC),has brought new opportunities to file system design.In this paper,we design and implement a new file system named NICFS ... Emergence of new hardware,including persistent memory and smart network interface card(SmartNIC),has brought new opportunities to file system design.In this paper,we design and implement a new file system named NICFS based on persistent memory and SmartNIC.We divide the file system into two parts:the front end and the back end.In the front end,data writes are appended to the persistent memory in a log-structured way,leveraging the fast persistence advantage of persistent memory.In the back end,the data in logs are fetched,processed,and patched to files in the background,leveraging the processing capacity of SmartNIC.Evaluation results show that NICFS outperforms Ext4 by about 21%/10%and about 19%/50%on large and small reads/writes,respectively. 展开更多
关键词 Non-volatile memory Persistent memory Data processing unit Smart network interface card(SmartNIC) File system
原文传递
用0.8μm工艺技术设计的65-kb BiCMOS SRAM 被引量:4
11
作者 董素玲 成立 +1 位作者 王振宇 高平 《半导体技术》 CAS CSCD 北大核心 2003年第6期44-48,共5页
设计了一种65-kb BiCMOS静态随机存取存储器(SRAM)的存储单元及其外围电路,提出了采用先进的0.8mm BiCMOS工艺,制作所设计SRAM的一些技术要点。实验结果表明,所设计的BiCMOSSRAM,其电源电压可低于3V,它既保留了CMOS SRAM低功耗、高集成... 设计了一种65-kb BiCMOS静态随机存取存储器(SRAM)的存储单元及其外围电路,提出了采用先进的0.8mm BiCMOS工艺,制作所设计SRAM的一些技术要点。实验结果表明,所设计的BiCMOSSRAM,其电源电压可低于3V,它既保留了CMOS SRAM低功耗、高集成密度的长处,又获得了双极型(Bipolar)电路快速、大电流驱动能力的优点,因此,特别适用于高速缓冲静态存储系统和便携式数字电子设备中。 展开更多
关键词 0.8μm工艺技术 静态随机存取存储器 BICMOS SRAM 双极互补金属氧化物半导体器件 输入/输出电路 地址译码器
下载PDF
Soil NOx Emission Prediction via Recurrent Neural Networks
12
作者 Zhaoan Wang Shaoping Xiao +2 位作者 Cheryl Reuben Qiyu Wang Jun Wang 《Computers, Materials & Continua》 SCIE EI 2023年第10期285-297,共13页
This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impa... This paper presents designing sequence-to-sequence recurrent neural network(RNN)architectures for a novel study to predict soil NOx emissions,driven by the imperative of understanding and mitigating environmental impact.The study utilizes data collected by the Environmental Protection Agency(EPA)to develop two distinct RNN predictive models:one built upon the long-short term memory(LSTM)and the other utilizing the gated recurrent unit(GRU).These models are fed with a combination of historical and anticipated air temperature,air moisture,and NOx emissions as inputs to forecast future NOx emissions.Both LSTM and GRU models can capture the intricate pulse patterns inherent in soil NOx emissions.Notably,the GRU model emerges as the superior performer,surpassing the LSTM model in predictive accuracy while demonstrating efficiency by necessitating less training time.Intriguingly,the investigation into varying input features reveals that relying solely on past NOx emissions as input yields satisfactory performance,highlighting the dominant influence of this factor.The study also delves into the impact of altering input series lengths and training data sizes,yielding insights into optimal configurations for enhanced model performance.Importantly,the findings promise to advance our grasp of soil NOx emission dynamics,with implications for environmental management strategies.Looking ahead,the anticipated availability of additional measurements is poised to bolster machine-learning model efficacy.Furthermore,the future study will explore physical-based RNNs,a promising avenue for deeper insights into soil NOx emission prediction. 展开更多
关键词 Soil NOx emission long-short term memory gated recurrent unit sequence-to-sequence
下载PDF
基于记忆单元与多尺度结构相似性的异常检测
13
作者 王婷 宣士斌 +1 位作者 付孟丹 周建亭 《微电子学与计算机》 2023年第8期28-36,共9页
针对基于记忆单元的自编码器模型(Dynamic Prototype Unit Model,DPU)在检测视频异常时没有充分利用多层次特征、未考虑异常与正常事件间的结构性差异的问题,提出融合多尺度记忆模块和多尺度结构相似性的异常检测模型.新模型构建了多尺... 针对基于记忆单元的自编码器模型(Dynamic Prototype Unit Model,DPU)在检测视频异常时没有充分利用多层次特征、未考虑异常与正常事件间的结构性差异的问题,提出融合多尺度记忆模块和多尺度结构相似性的异常检测模型.新模型构建了多尺度记忆模块(Multi Scale Memory Module),利用不同尺度空间的记忆单元对编码层特征进行编码,并将编码结果与解码层特征拼接,既能保留网络的浅层细节信息,又能促进正常模式的多样性.为了约束对正常事件中结构信息的学习,组合多尺度结构相似性(Multi Scale Structure Similarity Index,MS-SSIM)误差与误差作为目标函数,使预测视频中的事件结构更接近正常事件,提高视频中异常事件的预测误差.在标准数据集UCSD Ped1、UCSD Ped2和Avenue数据集上的实验结果表明,提出模型的帧级AUC比原模型分别提高了0.8%、3.4%和1.0%,帧率达到142.9 fps. 展开更多
关键词 视频异常检测 记忆单元 多尺度结构相似性 自编码器 MS-SSIM
下载PDF
An Improved Time Feedforward Connections Recurrent Neural Networks
14
作者 Jin Wang Yongsong Zou Se-Jung Lim 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2743-2755,共13页
Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to ... Recurrent Neural Networks(RNNs)have been widely applied to deal with temporal problems,such as flood forecasting and financial data processing.On the one hand,traditional RNNs models amplify the gradient issue due to the strict time serial dependency,making it difficult to realize a long-term memory function.On the other hand,RNNs cells are highly complex,which will signifi-cantly increase computational complexity and cause waste of computational resources during model training.In this paper,an improved Time Feedforward Connections Recurrent Neural Networks(TFC-RNNs)model was first proposed to address the gradient issue.A parallel branch was introduced for the hidden state at time t−2 to be directly transferred to time t without the nonlinear transforma-tion at time t−1.This is effective in improving the long-term dependence of RNNs.Then,a novel cell structure named Single Gate Recurrent Unit(SGRU)was presented.This cell structure can reduce the number of parameters for RNNs cell,consequently reducing the computational complexity.Next,applying SGRU to TFC-RNNs as a new TFC-SGRU model solves the above two difficulties.Finally,the performance of our proposed TFC-SGRU was verified through sev-eral experiments in terms of long-term memory and anti-interference capabilities.Experimental results demonstrated that our proposed TFC-SGRU model can cap-ture helpful information with time step 1500 and effectively filter out the noise.The TFC-SGRU model accuracy is better than the LSTM and GRU models regarding language processing ability. 展开更多
关键词 Time feedforward connections long-short term memory gated recurrent unit SGRU RNNs
下载PDF
基于扩展截割路径的采煤机端头记忆截割方法研究
15
作者 任鹏飞 《机械管理开发》 2023年第4期156-157,160,共3页
对采煤机进行基于扩展截割路径的采煤机端头记忆截割方案设计,从控制流程、系统组成及设备选型方面进行记忆截割系统搭建,并以控制记忆单元点的方式对采煤机牵引速度、滚筒调高信号进行简化数据收集,确保记忆截割数据的高效精确性。通... 对采煤机进行基于扩展截割路径的采煤机端头记忆截割方案设计,从控制流程、系统组成及设备选型方面进行记忆截割系统搭建,并以控制记忆单元点的方式对采煤机牵引速度、滚筒调高信号进行简化数据收集,确保记忆截割数据的高效精确性。通过试验表明,截割轨迹控制精确,采煤机设备运行平稳。 展开更多
关键词 采煤机 扩展截割 记忆单元 路径跟踪
下载PDF
Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature
16
作者 Donghun Wang Jonghyun Lee +1 位作者 Minchan Kim Insoo Lee 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2025-2040,共16页
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter... Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate. 展开更多
关键词 Lithium-ionbattery state of charge multilayer neural network long short-term memory gated recurrent unit vehicle driving simulator
下载PDF
支持遗忘特征的记忆模型及其在知识管理中的应用 被引量:3
17
作者 张格伟 胡建 +1 位作者 俞烽 廖文和 《信息与控制》 CSCD 北大核心 2008年第5期621-626,共6页
为了在知识管理系统中有效进行知识筛选,本文将遗忘的特性引入知识管理,建立了复合记忆—遗忘数学模型.探讨了该模型的数学特性,并对其进行了适合计算机模拟的等效简化.探讨了该模型在知识管理系统中的应用和实现方法,并给出了实例.该... 为了在知识管理系统中有效进行知识筛选,本文将遗忘的特性引入知识管理,建立了复合记忆—遗忘数学模型.探讨了该模型的数学特性,并对其进行了适合计算机模拟的等效简化.探讨了该模型在知识管理系统中的应用和实现方法,并给出了实例.该模型有助于识别知识管理系统中的老化知识和新知识,优选关键知识,提高系统效率. 展开更多
关键词 知识管理 记忆模型 遗忘 再激励 知识元
下载PDF
Li-ion battery temperature estimation based on recurrent neural networks 被引量:3
18
作者 JIANG YuHeng YU YiFei +2 位作者 HUANG JianQing CAI WeiWei MARCO James 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第6期1335-1344,共10页
The monitoring of Li-ion battery temperatures is essential to ensure high efficiency and safety.In this work,two types of recurrent neural networks (RNNs),which are long short-term memory-RNN (LSTM-RNN) and gated recu... The monitoring of Li-ion battery temperatures is essential to ensure high efficiency and safety.In this work,two types of recurrent neural networks (RNNs),which are long short-term memory-RNN (LSTM-RNN) and gated recurrent unit-RNN(GRU-RNN),are proposed to estimate the surface temperature of 18650 Li-ion batteries during the discharging processes under different ambient temperatures.The datasets acquired from the Prognostics Center of Excellence (PCo E) of NASA are used to train,validate and test the networks.In previous work,temperature has been set as the output of the networks;however,here the temperature difference along the time axis is adopted as the output.The net heat generated results in net temperature change,which is more closely aligned with electrochemical and thermodynamic laws.Extensive simulation results show that the two RNNs can achieve accurate real-time battery temperature estimation.The maximum absolute error in temperature estimation is approximately 0.75°C and the correlation coefficient between the estimated and measured temperature curves is greater than 0.95.The influences of three crucial parameters,which are the number of hidden neurons,initial learning rate and maximum number of iterations,are also assessed in terms of training time,root mean square error and mean absolute error. 展开更多
关键词 battery temperature estimation model recurrent neural network long short-term memory gated recurrent unit
原文传递
Chiller faults detection and diagnosis with sensor network and adaptive 1D CNN 被引量:2
19
作者 Ke Yan Xiaokang Zhou 《Digital Communications and Networks》 SCIE CSCD 2022年第4期531-539,共9页
Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of... Computer-empowered detection of possible faults for Heating,Ventilation and Air-Conditioning(HVAC)subsystems,e.g.,chillers,is one of the most important applications in Artificial Intelligence(AI)integrated Internet of Things(IoT).The cyber-physical system greatly enhances the safety and security of the working facilities,reducing time,saving energy and protecting humans’health.Under the current trends of smart building design and energy management optimization,Automated Fault Detection and Diagnosis(AFDD)of chillers integrated with IoT is highly demanded.Recent studies show that standard machine learning techniques,such as Principal Component Analysis(PCA),Support Vector Machine(SVM)and tree-structure-based algorithms,are useful in capturing various chiller faults with high accuracy rates.With the fast development of deep learning technology,Convolutional Neural Networks(CNNs)have been widely and successfully applied to various fields.However,for chiller AFDD,few existing works are adopting CNN and its extensions in the feature extraction and classification processes.In this study,we propose to perform chiller FDD using a CNN-based approach.The proposed approach has two distinct advantages over existing machine learning-based chiller AFDD methods.First,the CNN-based approach does not require the feature selection/extraction process.Since CNN is reputable with its feature extraction capability,the feature extraction and classification processes are merged,leading to a more neat AFDD framework compared to traditional approaches.Second,the classification accuracy is significantly improved compared to traditional methods using the CNN-based approach. 展开更多
关键词 CHILLER Fault detection and diagnosis Deep learning neural network Long short term memory Recurrent neural network Gated recurrent unit
下载PDF
一款异步256kB SRAM的设计 被引量:2
20
作者 潘培勇 李红征 《电子与封装》 2007年第10期17-20,共4页
在集成电路设计制造水平不断提高的今天,SRAM存储器不断朝着大容量、高速度、低功耗的方向发展。文章提出了一款异步256kB(256k×1)SRAM的设计,该存储器采用了六管CMOS存储单元、锁存器型灵敏放大器、ATD电路,采用0.5μm体硅CMOS工... 在集成电路设计制造水平不断提高的今天,SRAM存储器不断朝着大容量、高速度、低功耗的方向发展。文章提出了一款异步256kB(256k×1)SRAM的设计,该存储器采用了六管CMOS存储单元、锁存器型灵敏放大器、ATD电路,采用0.5μm体硅CMOS工艺,数据存取时间为12ns。 展开更多
关键词 静态随机存储器 存储单元 译码器 灵敏放大器 地址变化探测电路
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部