Chalcogenide based phase change random access memory(PCRAM) holds great promise for high speed and large data storage applications.This memory is scalable,requires a low switching energy,has a high endurance,has fast ...Chalcogenide based phase change random access memory(PCRAM) holds great promise for high speed and large data storage applications.This memory is scalable,requires a low switching energy,has a high endurance,has fast switching speed,and is nonvolatile.However,decreasing the switching time whilst increasing the cycle endurance is a key challenge for this technology to replace dynamic random access memory.Here we demonstrate high speed and high endurance ultrafast transient switching in the SET state of a prototypical phase change memory cell.Volatile switching is modeled by electron-phonon and lattice scattering on short timescales and charge carrier excitation on long timescales.This volatile switching in phase change materials enables the design of hybrid memory modulators and ultrafast logic circuits.展开更多
A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is an...A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is analyzed and calculated, including the amplitudes of reference, read and write signal, duration of write signal and doping density of the diode array. The conclusions can be employed for the design of improved strip-coupled SAW memorycorrelators.展开更多
With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrie...With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrier generation in a capacitor often makes an underestimation of the program/erase speed. In this paper, illumination around a memory capacitor is proposed to enhance the generation of minority carriers so that an accurate measurement of the program/erase speed can be achieved. From the dependence of the inversion capacitance on frequency, a time constant is extracted to quantitatively characterize the formation of the inversion layer. Experimental results show that under a high enough illumination, this time constant is greatly reduced and the measured minority carrier-related program/erase speed is in agreement with the reported value in a transistor structure.展开更多
基金funded by the Singapore Ministry of Education (MOE) with a Tier-2 grant (MOE2017-T2-1161)。
文摘Chalcogenide based phase change random access memory(PCRAM) holds great promise for high speed and large data storage applications.This memory is scalable,requires a low switching energy,has a high endurance,has fast switching speed,and is nonvolatile.However,decreasing the switching time whilst increasing the cycle endurance is a key challenge for this technology to replace dynamic random access memory.Here we demonstrate high speed and high endurance ultrafast transient switching in the SET state of a prototypical phase change memory cell.Volatile switching is modeled by electron-phonon and lattice scattering on short timescales and charge carrier excitation on long timescales.This volatile switching in phase change materials enables the design of hybrid memory modulators and ultrafast logic circuits.
文摘A detailed theoretical analysis of strip-coupled LiNbO3/p+ n diode surface acoustic wave (SAW) memory correlator in the parametric mode is presented. The influence of some important factors on correlation output is analyzed and calculated, including the amplitudes of reference, read and write signal, duration of write signal and doping density of the diode array. The conclusions can be employed for the design of improved strip-coupled SAW memorycorrelators.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2010CB934200 and 2011CBA00600)the National Natural Science Foundation of China (Grant Nos. 7360825403, 61176080, and 61176073)the National Science and Technology Major Project of China (Grant No. 2009ZX02023-005)
文摘With the merits of a simple process and a short fabrication period, the capacitor structure provides a convenient way to evaluate memory characteristics of charge trap memory devices. However, the slow minority carrier generation in a capacitor often makes an underestimation of the program/erase speed. In this paper, illumination around a memory capacitor is proposed to enhance the generation of minority carriers so that an accurate measurement of the program/erase speed can be achieved. From the dependence of the inversion capacitance on frequency, a time constant is extracted to quantitatively characterize the formation of the inversion layer. Experimental results show that under a high enough illumination, this time constant is greatly reduced and the measured minority carrier-related program/erase speed is in agreement with the reported value in a transistor structure.