CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)- κB. However, it is still unknown which receptor...CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)- κB. However, it is still unknown which receptor functions upstream of CARMA3 to trigger NF-κB activation. Recently, several studies have demonstrated that CARMA3 serves as an indispensable adaptor protein in NF-κB signaling under some G protein-coupled receptors (GP- CRs), such as lysophosphatidic acid (LPA) receptor and angiotensin (Ang) Ⅱ receptor. Mechanistically, CARMA3 recruits its essential downstream molecules Bcl10 and MALT1 to form the CBM (CARMA3-Bcl10-MALT1) signalosome whereby it triggers NF-κB activation. GPCRs and NF-κB play pivotal roles in the regulation of various cellular functions, therefore, aberrant regulation of the GPCR/NF-κB signaling axis leads to the development of many types of diseases, such as cancer and atherogenesis. Recently, the GPCR/CARMA3/NF-κB signaling axis has been confirmed in these specific diseases and it plays crucial roles in the pathogenesis of disease progression. In ovarian cancer cell lines, knockdown of CARMA3 abolishes LPA receptor-induced NF-κB activation, and reduces LPA-induced ovarian cancer invasion. In vascular smooth cells, downregulation of CARMA3 substantially impairs Ang-Ⅱ-receptor-induced NF-κB activation, and in vivo studies have confirmed that Bcl10- deficient mice are protected from developing Ang-Ⅱ-receptor-induced atherosclerosis and aortic aneurysms. In this review, we summarize the biology of CARMA3, describe the role of the GPCR/CARMA3/NF-κB signaling axis in ovarian cancer and atherogenesis, and speculate about the potential roles of this signaling axis in other types of cancer and diseases. With a significant increase in the identification of LPA- and Ang-Ⅱ-like ligands, such as endothelin-1, which also activates NF-κB via CARMA3 and contributes to the development of many diseases, CARMA3 is emerging as a novel therapeutic target for various types of cancer an展开更多
Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depen...Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depending on different developmental context or stress severity. The Arabidopsis membrane-associated transcription factor, b ZIP28, is the functional equivalent of mammalian ATF6, which relocates from the ER to the Golgi where it is proteolytically processed and released from the membrane to the nucleus to mediate the UPR. Although the canonical site-1 protease(S1P) cleavage site on the ER lumen-facing domain is well conserved between b ZIP28 and ATF6, the importance of S1 P cleavage on b ZIP28 has not been experimentally demonstrated. Here we provide genetic evidence that the RRIL573 site, but not the RVLM373 site, on the lumen-facing domain of bZ IP28 is critical for the biological function of b ZIP28 under ER stress condition. Further biochemistry and cell biology studies demonstrated that the RRIL573 site, but not the RVLM373 site, is required for proteolytic processing and nuclear relocation of b ZIP28 in response to ER stress. Our results reveal that S1 P cleavage site plays a pivotal role in activation and function of b ZIP28 during UPR in plants.展开更多
基金Supported by The National Institutes of Health through MD Anderson's Cancer Center Support Grant, No. CA016672
文摘CARD recruited membrane associated protein 3 (CARMA3) is a novel scaffold protein. It belongs to the CARMA protein family, and is known to activate nuclear factor (NF)- κB. However, it is still unknown which receptor functions upstream of CARMA3 to trigger NF-κB activation. Recently, several studies have demonstrated that CARMA3 serves as an indispensable adaptor protein in NF-κB signaling under some G protein-coupled receptors (GP- CRs), such as lysophosphatidic acid (LPA) receptor and angiotensin (Ang) Ⅱ receptor. Mechanistically, CARMA3 recruits its essential downstream molecules Bcl10 and MALT1 to form the CBM (CARMA3-Bcl10-MALT1) signalosome whereby it triggers NF-κB activation. GPCRs and NF-κB play pivotal roles in the regulation of various cellular functions, therefore, aberrant regulation of the GPCR/NF-κB signaling axis leads to the development of many types of diseases, such as cancer and atherogenesis. Recently, the GPCR/CARMA3/NF-κB signaling axis has been confirmed in these specific diseases and it plays crucial roles in the pathogenesis of disease progression. In ovarian cancer cell lines, knockdown of CARMA3 abolishes LPA receptor-induced NF-κB activation, and reduces LPA-induced ovarian cancer invasion. In vascular smooth cells, downregulation of CARMA3 substantially impairs Ang-Ⅱ-receptor-induced NF-κB activation, and in vivo studies have confirmed that Bcl10- deficient mice are protected from developing Ang-Ⅱ-receptor-induced atherosclerosis and aortic aneurysms. In this review, we summarize the biology of CARMA3, describe the role of the GPCR/CARMA3/NF-κB signaling axis in ovarian cancer and atherogenesis, and speculate about the potential roles of this signaling axis in other types of cancer and diseases. With a significant increase in the identification of LPA- and Ang-Ⅱ-like ligands, such as endothelin-1, which also activates NF-κB via CARMA3 and contributes to the development of many diseases, CARMA3 is emerging as a novel therapeutic target for various types of cancer an
基金supported by grants from the National Basic Research Program of China(973 Program,2012CB910500)the National Natural Science Foundation of China(31171157,31222008)the Specialized Research Fund for the Doctoral Program of Higher Education(20130071110011)
文摘Many sources of stress cause accumulation of unfolded or misfolded proteins in endoplasmic reticulum(ER), which elicits the unfolded protein response(UPR) to either promote cell survival or programmed cell death depending on different developmental context or stress severity. The Arabidopsis membrane-associated transcription factor, b ZIP28, is the functional equivalent of mammalian ATF6, which relocates from the ER to the Golgi where it is proteolytically processed and released from the membrane to the nucleus to mediate the UPR. Although the canonical site-1 protease(S1P) cleavage site on the ER lumen-facing domain is well conserved between b ZIP28 and ATF6, the importance of S1 P cleavage on b ZIP28 has not been experimentally demonstrated. Here we provide genetic evidence that the RRIL573 site, but not the RVLM373 site, on the lumen-facing domain of bZ IP28 is critical for the biological function of b ZIP28 under ER stress condition. Further biochemistry and cell biology studies demonstrated that the RRIL573 site, but not the RVLM373 site, is required for proteolytic processing and nuclear relocation of b ZIP28 in response to ER stress. Our results reveal that S1 P cleavage site plays a pivotal role in activation and function of b ZIP28 during UPR in plants.