As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic mat...As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic materials,unique hierarchical microstructures are constructed during additive manufacturing,which endow them with numerous excellent properties.To take full advantage of additive manufacturing,an in-depth understanding of the microstructure evolution mechanism is required.To this end,this review explores the fundamental procedures of additive manufacturing,that is,the formation and binding of melt pools.A comprehensive processing map is proposed that integrates melt pool energy-and geometry-related process parameters together.Based on it,additively manufactured microstructures are developed during and after the solidification of constituent melt pool.The solidification structures are composed of primary columnar grains and fine secondary phases that form along the grain boundaries.The post-solidification structures include submicron scale dislocation cells stemming from internal residual stress and nanoscale precipitates induced by intrinsic heat treatment during cyclic heating of adjacent melt pool.Based on solidification and dislocation theories,the formation mechanisms of the multistage microstructures are thoroughly analyzed,and accordingly,multistage control methods are proposed.In addition,the underlying atomic scale structural features are briefly discussed.Furthermore,microstructure design for additive manufacturing through adjustment of process parameters and alloy composition is addressed to fulfill the great potential of the technique.This review not only builds a solid microstructural framework for metallic materials produced by additive manufacturing but also provides a promising guideline to adjust their mechanical properties.展开更多
Minerals of spinel- and garnet-facies mantle xenoliths entrained in Cenozoicbasalts from eastern China (North China, Northeastern China and Southeastern China coastal area)contains lots of melt inclusions. Studies on ...Minerals of spinel- and garnet-facies mantle xenoliths entrained in Cenozoicbasalts from eastern China (North China, Northeastern China and Southeastern China coastal area)contains lots of melt inclusions. Studies on these melt inclusions show that the glass inclusionsare rich in SiO_2 (60%—68%) and alkalis (K_2O+Na_2O = 5%—11%, especially for K_2O) as well asvolatiles such as H_2O and CO_2 (2%—7%), which belong to dacites and andesites of the high-K calcicalkali series rocks with few shoshonites. High Al and Ca diopside in melt inclusion is the productof melt crystallization at high temperature and pressure, rather than the product ofdevitrification. Results show that these K-rich (in general K_2O 】 3%) intermediate-acidic silicatemelt inclusions have characteristics of continent without a genetical link to host basalts and theirphenocrystic minerals. Thus, these trapped melt inclusions represent melts of Mesozoic lithosphericmantle-crust interaction and imply that the continental lithospheric mantle beneath eastern Chinahad undergone fragmentation and recreation processes during the Mesozoic and Cenozoic periods. Thisresult undoubtly provides important implication for the evolution of sub-continental lithospherebeneath eastern China. We propose that these Si- and alkalis-rich melts should be responsible forthe mantle chemical heterogeneity underneath eastern China.展开更多
The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,sc...The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.展开更多
Though magmatic origin of Li-F-rich granite has been supported effectively by the existence of volcanic and subvolcanic rocks and melt inclusions trapped in them with similar chemical compositions, evidence from high ...Though magmatic origin of Li-F-rich granite has been supported effectively by the existence of volcanic and subvolcanic rocks and melt inclusions trapped in them with similar chemical compositions, evidence from high T-P experiments is poor up to now. To simulate the evolution process of Li-F-rich granite and to interpret its forming mechanism, a series of melting-crystallization experiments were carried out. Under the conditions of 1×108 Pa and 570–700°C, a magmatic mineral association of quartz + alkali feldspar + lithium muscovite/ferromuscovite ± fluorite ± cassiterite is found in leucogranite-HF-H2O system. This indicates the following points: (i) Fluorite, light-colored muscovite and cassiterite can crystallize directly from the Li-F-rich granitic melt. (ii) The coexistence of dark-colored micas (e.g. biotite) and light-colored micas (e.g. lithium muscovite and ferromuscovite) suggests that the muscovite granite and two-mica granite can be formed under magmatic condition. The zonal texture of micas is not the sole feature for the micas of hydrothermal origin. (iii) As crystallization proceeds, the SiO2 concentration of the residual melt decreases, while the Al2O3 and F concentrations and A/CNK, NKA/Si ratios of the melt incerese, favoring the formation of Li-F-rich granites. Our experiment results are well consistent with the vertical zonation widely observed in rare metal bearing granites, and therefore provide strong experimental evidence for magmatic origin of Li-F-rich granite.展开更多
Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the micros...Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.展开更多
We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and G...We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and Grt_4)are observed in the rock with specific types of inclusion features.Only Grt_3 shows evidence for non-coaxial strain.Combining the information shows a sequence of main inclusion phases,from old to young:oriented quartz inclusions at core,staurolite and prismatic sillimanite at mantle,kyanite and kyanite pseudomorph,and biotite at rim in Grt_1;fibrolitic sillimanite pseudomorphing kyanite±corundum,kyanite,and spinel+sillimanite after garnet+corundum in Grt_2;biotite,sillimanite,quartz±spinel in Grt_3;and ilmenite,rulite,quartz and sillimanite in Grt_4.The pre-melting,original rock composition was calculated through stepwise re-integration of melt into the residual,XRF based composition,allowing the early prograde metamorphic evolution to be deduced from petrographical observations and pseudosections.The earliest recognizable stage occurred in the sillimanite field at around 575℃ at 4.5 kbar.Subsequent collision associated with Gondwana amalgamation led to crustal thickening along a P-T trajectory with an average dP/dT of ~30 bar/℃ in the kyanite field,up to ~660℃ at 6.5 kbar,before crossing the wet-solidus at around 675 ℃ at 7.5 kbar.The highest pressure occurred at P > 10 kbar and T around 780℃ before prograde decompression associated with further heating.At 825℃ and 10.5 kbar,the rock re-entered into the sillimanite field.The temperature peaked at 900℃ at ca.9-9.5 kbar.Subsequent near-isobaric cooling led to the growth of Grt_4 and rutile at T ~880℃.Local pyrophyllite rims around sillimanite suggest a late stage of rehydration at T<400℃,which probably occurred after uplift to upper crustal levels.U-Pb dating of zircons by LAICPMS of the khondalite yielded two concordant ^(206)Pb/^(238)U age groups with mean values of 542±2 Ma(MSWD=0.24,Th/U=0.01-0.03)and 514±3 Ma(MSWD=0.50,展开更多
To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics sug...To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics suggested a two-phase process of rapid penetration followed by moderate penetration.As revealed in the ejection and vaporization behavior,the keyhole evolution was dominated by ejection and vaporization during the rapid and moderate penetration stages,respectively.In a single laser-pulsed drilling experiment,the driving mechanism itself was found to be affected by the dimensionless laser power density.The effect of dimensionless laser power density on depth increment was then discussed by comparing the experimental observations with numerical simulation results.The results further confirmed the driving mechanism of the keyhole evolution.The results in this paper are useful for understanding the driving mechanism of the keyhole evolution during multi-pulse laser drilling.展开更多
The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then com...The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then compared with those of conventional coarse struc- ture. The microstructural evolution was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. Microhardness measurements indicate a two-fold increase in hardness because of the produced nanos- lructure. Comparing to its coarse structure, the nanostructured Cu-A1-Ni shape memory alloy exhibited the enhanced mechanical properties including a ductility of 6.5% and a pronounced plateau in the stress-strain curve.展开更多
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru...The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.展开更多
The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough...The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough are determined by electron microprobe. The results show that the basalt is a dor- galite consisting of phenocrysts of bytownite, chrysolite, clinopyroxene and magnetite as well as labradorite microcrystal, matrix glass and a few bits of broken vein quartz. Glassy melt inclusion and chromohercynite or chrompleonaste exist in bytownite and chrysolite. The formation of the spinels is re- lated to partial melting of mantle. The melt inclusions stand for a primary alkali dorgalitic magma, whose composition corresponds to olivine gabbro. The basaltic magma was generated from partial melting of spinel-lherzolite of the upper mantle and evolved in a process of 'alkali dorgalitic magma-trachy- basaltic magma-basdaltic trachytic magma-trachytic magma'. Assimilation and hybridization of crustal material may exist during magma upwelling in every evolutionary stage.展开更多
The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin ...The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin evolution,magmatism,and crustmantle processes in the early stage of back-arc spreading.Melt inclusions are small droplets of magma that are captured during the mineral crystallization process and can record the geochemical composition changes during magma evolution.In this study,the geochemical compositions of melt inclusions in host plagioclases of two volcanic rock samples at Station nos.9-1 and 9-2 from the southern Okinawa Trough are systematically analyzed.Based on previous studies,the origin and evolution of magma and the introduction of subducting materials in the study area are discussed.Results show that melt inclusions are characterized by the relative enrichment of large-ion lithophile elements,depletion of high-field-strength elements,and slight enrichment of rare earth elements.Indeed,the subduction of the Philippine Sea Plate introduced sediment-derived melts and fluids into the magma source area of the southern Okinawa Trough.Subsequently,4%to 5%partial melting of the hydrated mantle produces basaltic magma.The melt inclusions of andesite and dacite investigated in this study were formed by fractional crystallization of basaltic magma.Finally,the crystallization of plagioclase,pyroxene,and magnetite occurred during the late stage of magma evolution.The temperature-pressure data show that the melt inclusions in plagioclase have two capture periods:one is at temperatures above 1250℃and the other is at temperatures between 1180℃and 1200℃.The capture pressure of the inclusions at temperatures between 1180℃and 1200℃is between 5.6 kPa and 6.1 kPa,corresponding to the depth of 15–17 km below the seafloor.The geochemical characteristics of major and trace elements in inclusions show that the samples from two stations(i.e.,9-1 and 9-2)have similar or identical magma source areas.How展开更多
基金financial support of National Natural Science Foundation of China(No.51971149)the funding from Science and Technology Innovation Commission of Shenzhen(Nos.KQJSCX20180328095612712,GJHZ20190822095418365)+1 种基金Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110869 and 2019A1515110515)Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project(No.HZQB-KCZYB-2020030)。
文摘As a revolutionary industrial technology,additive manufacturing creates objects by adding materials layer by layer and hence can fabricate customized components with an unprecedented degree of freedom.For metallic materials,unique hierarchical microstructures are constructed during additive manufacturing,which endow them with numerous excellent properties.To take full advantage of additive manufacturing,an in-depth understanding of the microstructure evolution mechanism is required.To this end,this review explores the fundamental procedures of additive manufacturing,that is,the formation and binding of melt pools.A comprehensive processing map is proposed that integrates melt pool energy-and geometry-related process parameters together.Based on it,additively manufactured microstructures are developed during and after the solidification of constituent melt pool.The solidification structures are composed of primary columnar grains and fine secondary phases that form along the grain boundaries.The post-solidification structures include submicron scale dislocation cells stemming from internal residual stress and nanoscale precipitates induced by intrinsic heat treatment during cyclic heating of adjacent melt pool.Based on solidification and dislocation theories,the formation mechanisms of the multistage microstructures are thoroughly analyzed,and accordingly,multistage control methods are proposed.In addition,the underlying atomic scale structural features are briefly discussed.Furthermore,microstructure design for additive manufacturing through adjustment of process parameters and alloy composition is addressed to fulfill the great potential of the technique.This review not only builds a solid microstructural framework for metallic materials produced by additive manufacturing but also provides a promising guideline to adjust their mechanical properties.
基金supported by the National Natural Science Foundation of China(Grant No.40372044).
文摘Minerals of spinel- and garnet-facies mantle xenoliths entrained in Cenozoicbasalts from eastern China (North China, Northeastern China and Southeastern China coastal area)contains lots of melt inclusions. Studies on these melt inclusions show that the glass inclusionsare rich in SiO_2 (60%—68%) and alkalis (K_2O+Na_2O = 5%—11%, especially for K_2O) as well asvolatiles such as H_2O and CO_2 (2%—7%), which belong to dacites and andesites of the high-K calcicalkali series rocks with few shoshonites. High Al and Ca diopside in melt inclusion is the productof melt crystallization at high temperature and pressure, rather than the product ofdevitrification. Results show that these K-rich (in general K_2O 】 3%) intermediate-acidic silicatemelt inclusions have characteristics of continent without a genetical link to host basalts and theirphenocrystic minerals. Thus, these trapped melt inclusions represent melts of Mesozoic lithosphericmantle-crust interaction and imply that the continental lithospheric mantle beneath eastern Chinahad undergone fragmentation and recreation processes during the Mesozoic and Cenozoic periods. Thisresult undoubtly provides important implication for the evolution of sub-continental lithospherebeneath eastern China. We propose that these Si- and alkalis-rich melts should be responsible forthe mantle chemical heterogeneity underneath eastern China.
基金Project(2017GDASCX-0117)supported by the Guangdong Academy of Sciences,ChinaProject(201806010126)supported by the Pearl River S&T Nova Program of Guangzhou,China+3 种基金Projects(2017A050503004,2017A07071029)supported by the Guangdong Provincial Program of Science and Technology,ChinaProject(18126010)supported by the Guangxi Autonomous Regional Program of Science and Technology,ChinaProject(201802030012)supported by the Guangzhou Municipal Science and Technology Bureau,ChinaProject(2017A0109005)supported by the Sihui Plan Project of Science and Technology,China.
文摘The effect of the melt holding temperature on the morphological evolution and sedimentation behavior of iron-rich intermetallics in Al-7.0 Si-1.0 Fe-1.2 Mn-0.25 Mg alloy was investigated using an optical microscope,scanning electron microscope and differential thermal analyzer.The results show that as the holding temperature decreases,the morphologies of the primary iron-rich phase in matrix change from star-like to polygonal,and the number of the primary phases gradually decreases and disappears at 615°C.Finally,the Chinese script phases with small size,high compact and uniform distribution are obtained.In contrast,the primary iron-rich phases in slag transform into a coarser polygonal shape with lower roundness,and some of them have hollow structures.Furthermore,the area fraction of intermetallics and Fe content in the matrix decrease gradually due to the formation and growth of sludge and subsequent natural sedimentation during melt holding.With the decrease of holding temperature,the main factors hindering the settlement of the primary phases are morphology,size,and density in turn.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 40073008 and 40132010) the China Universities PhD Subject Foundation Project (Grant No.1999028420).
文摘Though magmatic origin of Li-F-rich granite has been supported effectively by the existence of volcanic and subvolcanic rocks and melt inclusions trapped in them with similar chemical compositions, evidence from high T-P experiments is poor up to now. To simulate the evolution process of Li-F-rich granite and to interpret its forming mechanism, a series of melting-crystallization experiments were carried out. Under the conditions of 1×108 Pa and 570–700°C, a magmatic mineral association of quartz + alkali feldspar + lithium muscovite/ferromuscovite ± fluorite ± cassiterite is found in leucogranite-HF-H2O system. This indicates the following points: (i) Fluorite, light-colored muscovite and cassiterite can crystallize directly from the Li-F-rich granitic melt. (ii) The coexistence of dark-colored micas (e.g. biotite) and light-colored micas (e.g. lithium muscovite and ferromuscovite) suggests that the muscovite granite and two-mica granite can be formed under magmatic condition. The zonal texture of micas is not the sole feature for the micas of hydrothermal origin. (iii) As crystallization proceeds, the SiO2 concentration of the residual melt decreases, while the Al2O3 and F concentrations and A/CNK, NKA/Si ratios of the melt incerese, favoring the formation of Li-F-rich granites. Our experiment results are well consistent with the vertical zonation widely observed in rare metal bearing granites, and therefore provide strong experimental evidence for magmatic origin of Li-F-rich granite.
基金National Natural Science Foundation of China(12072363,12272374,12372373)Special Fund for Fundamental Research of the Central Universities(WK2480000008,WK2480000007,WK2320000049)Anhui Provincial Science and Technology Major Project(202003A05020035)。
文摘Explosion welding was carried out on the basis of vacuum hot melt W/CuCrZr composite plate.Metallurgical microscope,scanning electron microscope and energy dispersive X-ray spectroscope were used to observe the microscopic morphology of the bonding interface.At the same time,combined with finite element calculations,the evolution mechanism of the interface of the hot melt explosion welded W/CuCrZr composite plate was explored.The results show that the interface bonding of the hot melt explosion welded W/CuCrZr composite plate is good and there is a cross-melting zone with 3–8μm in thickness,but cracks are developed on the W side.The numerical simulation reproduces the changes of pressure,stress,strain and internal energy at the bonding interface in the process of hot melt explosion welding.The location of the crack generated in the experiment coincides with the high stress position calculated by numerical simulation.The high pressure and high temperature near the hot melt explosion welding interface further promote the bonding of the interface.
基金the National Research Council(NRC)of Sri Lanka(grant NO 15-089)and the Ministry of Technology and Research(MTR/TRD/AGR/3/1/04)Department of Science and Technology,India(Grant No.DST/INT/SL/P-004)L.M.K.acknowledges support by the Stichting Dr.Schurmannfonds(Grants Nos.88/2012,94/2013 and 101/2014)
文摘We report here rare evidence for the early prograde P-Tevolution of garnet-sillimanite-graphite gneiss(khondalite)from the central Highland Complex,Sri Lanka.Four types of garnet porphyroblasts(Grt_1,Grt_2,Grt_3 and Grt_4)are observed in the rock with specific types of inclusion features.Only Grt_3 shows evidence for non-coaxial strain.Combining the information shows a sequence of main inclusion phases,from old to young:oriented quartz inclusions at core,staurolite and prismatic sillimanite at mantle,kyanite and kyanite pseudomorph,and biotite at rim in Grt_1;fibrolitic sillimanite pseudomorphing kyanite±corundum,kyanite,and spinel+sillimanite after garnet+corundum in Grt_2;biotite,sillimanite,quartz±spinel in Grt_3;and ilmenite,rulite,quartz and sillimanite in Grt_4.The pre-melting,original rock composition was calculated through stepwise re-integration of melt into the residual,XRF based composition,allowing the early prograde metamorphic evolution to be deduced from petrographical observations and pseudosections.The earliest recognizable stage occurred in the sillimanite field at around 575℃ at 4.5 kbar.Subsequent collision associated with Gondwana amalgamation led to crustal thickening along a P-T trajectory with an average dP/dT of ~30 bar/℃ in the kyanite field,up to ~660℃ at 6.5 kbar,before crossing the wet-solidus at around 675 ℃ at 7.5 kbar.The highest pressure occurred at P > 10 kbar and T around 780℃ before prograde decompression associated with further heating.At 825℃ and 10.5 kbar,the rock re-entered into the sillimanite field.The temperature peaked at 900℃ at ca.9-9.5 kbar.Subsequent near-isobaric cooling led to the growth of Grt_4 and rutile at T ~880℃.Local pyrophyllite rims around sillimanite suggest a late stage of rehydration at T<400℃,which probably occurred after uplift to upper crustal levels.U-Pb dating of zircons by LAICPMS of the khondalite yielded two concordant ^(206)Pb/^(238)U age groups with mean values of 542±2 Ma(MSWD=0.24,Th/U=0.01-0.03)and 514±3 Ma(MSWD=0.50,
基金supported by the National Natural Science Foundation of China(Grant Nos.11672304,11502269,11272316,and 11272317)the Plan of Beijing Municipal Commission of Science and Technology(Grant No.Z181100003818015)
文摘To better understand the physical processes of multi-pulse laser drilling,this study investigates the keyhole evolution and its driving mechanism in a time-resolved observation system.The evolution characteristics suggested a two-phase process of rapid penetration followed by moderate penetration.As revealed in the ejection and vaporization behavior,the keyhole evolution was dominated by ejection and vaporization during the rapid and moderate penetration stages,respectively.In a single laser-pulsed drilling experiment,the driving mechanism itself was found to be affected by the dimensionless laser power density.The effect of dimensionless laser power density on depth increment was then discussed by comparing the experimental observations with numerical simulation results.The results further confirmed the driving mechanism of the keyhole evolution.The results in this paper are useful for understanding the driving mechanism of the keyhole evolution during multi-pulse laser drilling.
文摘The melt spinning technique, with an applied cooling rate of about 106 K/s, was used to produce a nanostructured Cu+13.2Al+ 5.1Ni (in wt%) shape memory alloy. The properties of nanostructured ribbons were then compared with those of conventional coarse struc- ture. The microstructural evolution was characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. Microhardness measurements indicate a two-fold increase in hardness because of the produced nanos- lructure. Comparing to its coarse structure, the nanostructured Cu-A1-Ni shape memory alloy exhibited the enhanced mechanical properties including a ductility of 6.5% and a pronounced plateau in the stress-strain curve.
基金Projects(50831003,51071065,51101022,51102090) supported by the National Natural Science Foundation of China
文摘The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be.
基金This work was supported by the Youth Oceanic Science Foundation of State Oceanic Administration of China under contract!No. 94-2
文摘The contents of major element composition of the phenocrysts and the matrix glass as well as the spinel inclusions and the melt inclusion in the phenocrysts of the basalt dredged from Station 133 of the Okinawa Trough are determined by electron microprobe. The results show that the basalt is a dor- galite consisting of phenocrysts of bytownite, chrysolite, clinopyroxene and magnetite as well as labradorite microcrystal, matrix glass and a few bits of broken vein quartz. Glassy melt inclusion and chromohercynite or chrompleonaste exist in bytownite and chrysolite. The formation of the spinels is re- lated to partial melting of mantle. The melt inclusions stand for a primary alkali dorgalitic magma, whose composition corresponds to olivine gabbro. The basaltic magma was generated from partial melting of spinel-lherzolite of the upper mantle and evolved in a process of 'alkali dorgalitic magma-trachy- basaltic magma-basdaltic trachytic magma-trachytic magma'. Assimilation and hybridization of crustal material may exist during magma upwelling in every evolutionary stage.
基金the Na-tional Program on Key Basic Research of China(973 Program)(No.2013CB429702).
文摘The Okinawa Trough is an initial back-arc basin that is influenced by the subduction of the Philippine Sea Plate and develops on the continental crust.The Okinawa Trough is a natural laboratory for the study of basin evolution,magmatism,and crustmantle processes in the early stage of back-arc spreading.Melt inclusions are small droplets of magma that are captured during the mineral crystallization process and can record the geochemical composition changes during magma evolution.In this study,the geochemical compositions of melt inclusions in host plagioclases of two volcanic rock samples at Station nos.9-1 and 9-2 from the southern Okinawa Trough are systematically analyzed.Based on previous studies,the origin and evolution of magma and the introduction of subducting materials in the study area are discussed.Results show that melt inclusions are characterized by the relative enrichment of large-ion lithophile elements,depletion of high-field-strength elements,and slight enrichment of rare earth elements.Indeed,the subduction of the Philippine Sea Plate introduced sediment-derived melts and fluids into the magma source area of the southern Okinawa Trough.Subsequently,4%to 5%partial melting of the hydrated mantle produces basaltic magma.The melt inclusions of andesite and dacite investigated in this study were formed by fractional crystallization of basaltic magma.Finally,the crystallization of plagioclase,pyroxene,and magnetite occurred during the late stage of magma evolution.The temperature-pressure data show that the melt inclusions in plagioclase have two capture periods:one is at temperatures above 1250℃and the other is at temperatures between 1180℃and 1200℃.The capture pressure of the inclusions at temperatures between 1180℃and 1200℃is between 5.6 kPa and 6.1 kPa,corresponding to the depth of 15–17 km below the seafloor.The geochemical characteristics of major and trace elements in inclusions show that the samples from two stations(i.e.,9-1 and 9-2)have similar or identical magma source areas.How