跨膜蛋白63A(transmembrane protein 63,TMEM63A)是一种机械敏感性离子通道(mechanosensitive ion channel,MSC),在髓鞘形成过程中发挥重要作用。TMEM63A于2019年与髓鞘形成低下性脑白质营养不良19型(hypomyelinating leukodystrophy 19...跨膜蛋白63A(transmembrane protein 63,TMEM63A)是一种机械敏感性离子通道(mechanosensitive ion channel,MSC),在髓鞘形成过程中发挥重要作用。TMEM63A于2019年与髓鞘形成低下性脑白质营养不良19型(hypomyelinating leukodystrophy 19,HLD19)相关联,确定为HLD19的致病基因。髓鞘是神经系统中由少突胶质细胞形成的兼具营养轴突和加速动作电位传导的结构,髓鞘形成障碍可表现为髓鞘形成低下、髓鞘囊性化和髓鞘变性。髓鞘中脂质含量丰富,不同脂质参与髓鞘形成、修复和胶质细胞与轴突识别等重要过程。TMEM63A变异导致的HLD19为髓鞘形成低下性疾病。TMEM63A变异可引起渗透压改变,细胞上TMEM63A跨膜蛋白受机械刺激产生电流,从而影响少突胶质细胞分化、成熟,导致髓鞘形成异常;同时,TMEM63A变异也可引起细胞膜脂质的分布异常,影响脂质正常功能,异常的脂质通过参与不同的髓鞘形成环节最终导致了髓鞘形成障碍。展开更多
【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个...【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。展开更多
目的检测自发性高血压大鼠(SHR)和Wistar大鼠的ENaCs在mRNA水平的表达差异,探讨机械敏感性离子(Mechanosensitive Ion Channels,MS)对动脉压力感受器重调的作用。方法SHR大鼠和Wistar大鼠各6只,分别取左侧颈动脉窦、主动脉弓,异硫氰酸胍...目的检测自发性高血压大鼠(SHR)和Wistar大鼠的ENaCs在mRNA水平的表达差异,探讨机械敏感性离子(Mechanosensitive Ion Channels,MS)对动脉压力感受器重调的作用。方法SHR大鼠和Wistar大鼠各6只,分别取左侧颈动脉窦、主动脉弓,异硫氰酸胍-酚氯仿法抽提总RNA。采用荧光定量PCR法,分别测定αENaC、βENaC、γENaC在各组织的相对表达水平。结果正常血压的Wistar大鼠ENaCs表达在主动脉弓和颈动脉窦区域相对定量较SHR组大鼠高,在颈动脉窦区域表现更明显。结论高血压状态下,ENaCs在压力感受器区域下调表达,提示压力敏感性离子通道在压力反射重调方面可能发挥着一定作用。展开更多
机械性痛觉过敏是痛觉过敏的一种,表现为机械刺激引起的周围正常组织感觉敏感性增强,其传导机制十分复杂,目前尚未能完全阐明。近年来,有研究发现在真核生物中,多种力敏感离子通道(mechanosensitive ion channel, MSC)在机械痛觉过敏的...机械性痛觉过敏是痛觉过敏的一种,表现为机械刺激引起的周围正常组织感觉敏感性增强,其传导机制十分复杂,目前尚未能完全阐明。近年来,有研究发现在真核生物中,多种力敏感离子通道(mechanosensitive ion channel, MSC)在机械痛觉过敏的传导中发挥着重要作用,其中主要包括瞬时受体电位(transient receptor potential, TRP)家族及压电(Piezo)离子通道家族等。位于外周神经末梢的MSC能被机械性刺激激活,从而参与疼痛信号的转导过程。而抑制MSC的开放,将有助于阻止这一信号的转导。由此,文章对不同类型MSC参与机械性痛觉过敏的机制做进一步的总结以及深入理解MSC参与机械性痛觉过敏的过程,从而为机械性痛觉过敏的治疗提供新的药物靶点。展开更多
文摘跨膜蛋白63A(transmembrane protein 63,TMEM63A)是一种机械敏感性离子通道(mechanosensitive ion channel,MSC),在髓鞘形成过程中发挥重要作用。TMEM63A于2019年与髓鞘形成低下性脑白质营养不良19型(hypomyelinating leukodystrophy 19,HLD19)相关联,确定为HLD19的致病基因。髓鞘是神经系统中由少突胶质细胞形成的兼具营养轴突和加速动作电位传导的结构,髓鞘形成障碍可表现为髓鞘形成低下、髓鞘囊性化和髓鞘变性。髓鞘中脂质含量丰富,不同脂质参与髓鞘形成、修复和胶质细胞与轴突识别等重要过程。TMEM63A变异导致的HLD19为髓鞘形成低下性疾病。TMEM63A变异可引起渗透压改变,细胞上TMEM63A跨膜蛋白受机械刺激产生电流,从而影响少突胶质细胞分化、成熟,导致髓鞘形成异常;同时,TMEM63A变异也可引起细胞膜脂质的分布异常,影响脂质正常功能,异常的脂质通过参与不同的髓鞘形成环节最终导致了髓鞘形成障碍。
文摘【目的】细菌机械敏感性离子通道MscS能够在细菌周围环境渗透压急剧降低时,打开并释放胞内内容物,平衡内外渗透压差,使细菌存活。鉴于其广泛分布在各种细菌中,而在哺乳动物中未发现其同源体,MscS被认为是一种新型抗生素靶点。MscS一个独特的开放特征是具有失活特性,即在持续的机械刺激条件下,MscS从开放状态进入一种非离子通透的失活状态,从而避免因通道持续开放引起大量内容物流失导致细菌死亡。该研究的目的是鉴定影响MscS失活的关键氨基酸,为靶向Msc S的药物设计提供思路。【方法】采用分子克隆方法制备Msc S Cyto-helix(P166−I170)半胱氨酸突变体,利用巯基化合物MTSET^(+)结合半胱氨酸从而对其侧链基团进行修饰,并通过低渗刺激实验,检测表达MscS半胱氨酸突变体的大肠杆菌分别在无或有MTSET^(+)处理下,低渗刺激诱发通道开放后的存活率筛选显著影响通道功能的突变体。利用电生理膜片钳方法检测突变体在MTSET^(+)处理前后通道失活特性的变化,结合定点突变手段进一步探讨失活机制。【结果】MTSET^(+)处理导致表达半胱氨酸突变体G168C-MscS的大肠杆菌在低渗刺激后存活率极大降低;G168C-MscS在结合MTSET^(+)后失去失活特性,保持持续开放,是导致细菌胞内内容物大量流失并死亡的重要原因;酪氨酸突变G168Y-MscS、亮氨酸突变G168L-MscS和赖氨酸突变G168K-MscS的失活特性与野生型WT-MscS一致,而天冬氨酸突变G168D、缬氨酸突变G168V和异亮氨酸突变G168I的失活速率显著降低,尤其是G168I-MscS失去失活特性,表明MscS 168位点是影响通道失活的关键位点,并且通道失活特性与该位点氨基酸侧链基团的大小及电荷性质相关。【结论】G168位点甘氨酸是影响MscS通道失活的关键氨基酸。
文摘目的检测自发性高血压大鼠(SHR)和Wistar大鼠的ENaCs在mRNA水平的表达差异,探讨机械敏感性离子(Mechanosensitive Ion Channels,MS)对动脉压力感受器重调的作用。方法SHR大鼠和Wistar大鼠各6只,分别取左侧颈动脉窦、主动脉弓,异硫氰酸胍-酚氯仿法抽提总RNA。采用荧光定量PCR法,分别测定αENaC、βENaC、γENaC在各组织的相对表达水平。结果正常血压的Wistar大鼠ENaCs表达在主动脉弓和颈动脉窦区域相对定量较SHR组大鼠高,在颈动脉窦区域表现更明显。结论高血压状态下,ENaCs在压力感受器区域下调表达,提示压力敏感性离子通道在压力反射重调方面可能发挥着一定作用。