The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the ...The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstmcture of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) AI-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results ob- tained from the A356 alloy strengthened with ACL in the as-received condition. Microstmctural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the A1 matrix. In addition, electron microscopy was employed in or- der to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens alter solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes; however, mechanical results, in the modified A356 alloy with the ACL in the as-received condi- tion, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled.展开更多
Sr2CeO4 phosphor was synthesized by mechanical milling and reactive sintering in this work. The solid state reaction of SrCO3 and CeO2 (2∶1) started at about 850 ℃ and completed at 1 000 ℃ for about 4 h. Two types ...Sr2CeO4 phosphor was synthesized by mechanical milling and reactive sintering in this work. The solid state reaction of SrCO3 and CeO2 (2∶1) started at about 850 ℃ and completed at 1 000 ℃ for about 4 h. Two types of formation mechanism of Sr2CeO4 were proposed. When the starting powder mixture was fired above 1 000 ℃, the unstable intermediate phase SrCeO3 was developed, which then reacted with SrCO3 to form the final product Sr2CeO4, however, SrCO3 and CeO2 converted directly to Sr2CeO4 at a lower temperature. The XRD results showed the crystal structure of Sr2CeO4 was orthorhombic. The emission spectra displayed a broad band with maximum at about 465 nm. The mechanical milling of starting power mixture and the sintering temperature had no effect on this emission spectra.展开更多
Nanocrystalline/amorphous LaMg(12)-type alloyNi composites with a nominal composition of LaMg(11)Ni+x wt% Ni(x=100,200) were synthesized by mechanical milling.Effects of Ni content and milling time on the gaseous hydr...Nanocrystalline/amorphous LaMg(12)-type alloyNi composites with a nominal composition of LaMg(11)Ni+x wt% Ni(x=100,200) were synthesized by mechanical milling.Effects of Ni content and milling time on the gaseous hydrogen storage thermodynamics and dynamics of alloys were systematically investigated.The hydrogen desorption properties were studied by Sievert apparatus and a differential scanning calorimeter(DSC).Thermodynamic parameters(△H and ΔS) for the hydrogen absorption and desorption of alloys were calculated by Van't Hoff equation.Hydrogen desorption activation energy of alloy hydride was estimated by Arrhenius and Kissinger methods.The increase in Ni content has a slight effect on the thermodynamic properties of alloys,but it significantly enhances the hydrogen absorption and desorption kinetics performance of alloys.Moreover,variation of milling time clearly affects the hydrogen storage properties of alloys.Hydrogen absorption capacity(C(100)~a) and hydrogen absorption saturation ratio(R(10)~a)(a ratio of the hydrogen absorption capacity at 10 min to the saturated hydrogen absorption capacity) have maximum values with milling time varying.But hydrogen desorption ratio(R(20)~d)(a ratio of the hydrogen desorption capacity at 20 min to the saturated hydrogen absorption capacity) always increases with milling time prolonging.Particularly,prolonging milling time from 5 to 60 h makes R(20)~d increase from 10.89% to 16.36% for the x=100 alloy and from 13.93% to 21.68% for the x=200 alloy,respectively.展开更多
基金support from CONACYT via PhD scholarship 290674 and 290604
文摘The research of rare earths for the synthesis of materials with improved mechanical performance is of great interest when they are considered for potential applications in the automotive industry. In this regard, the effect on the mechanical properties and microstmcture of the automotive A356 aluminum alloy reinforced with 0.2 (wt.%) AI-6Ce-3La (ACL) was investigated. The ACL was added to the melted A356 alloy in the as-received condition and processed by mechanical milling. In the second route, the effect of the ACL processed by mechanical milling and powder metallurgy techniques was investigated, and compared with the results ob- tained from the A356 alloy strengthened with ACL in the as-received condition. Microstmctural properties were evaluated by means of X-ray diffraction in order to observe the solubility of Ce/La in the A1 matrix. In addition, electron microscopy was employed in or- der to investigate the effect of milling time on the size and morphology of La/Ce phase under milling process. Mechanical properties of the A356 alloy modified with ACL were measured by hardness and tensile test. For comparison unmodified specimens of the A356 were characterized according to the previous procedure. The microstructural and mechanical characterization was carried out in specimens alter solution and artificial aging. Observations in scanning electron microscopy indicated a homogeneous dispersion of La/Ce phases by using both routes; however, mechanical results, in the modified A356 alloy with the ACL in the as-received condi- tion, showed an improvement in the mechanical performance of the A356 alloy over that reinforced with the ACL mechanically milled.
文摘Sr2CeO4 phosphor was synthesized by mechanical milling and reactive sintering in this work. The solid state reaction of SrCO3 and CeO2 (2∶1) started at about 850 ℃ and completed at 1 000 ℃ for about 4 h. Two types of formation mechanism of Sr2CeO4 were proposed. When the starting powder mixture was fired above 1 000 ℃, the unstable intermediate phase SrCeO3 was developed, which then reacted with SrCO3 to form the final product Sr2CeO4, however, SrCO3 and CeO2 converted directly to Sr2CeO4 at a lower temperature. The XRD results showed the crystal structure of Sr2CeO4 was orthorhombic. The emission spectra displayed a broad band with maximum at about 465 nm. The mechanical milling of starting power mixture and the sintering temperature had no effect on this emission spectra.
基金financially supported by the National Natural Science Foundation of China(Nos.51371094 and 51471054)
文摘Nanocrystalline/amorphous LaMg(12)-type alloyNi composites with a nominal composition of LaMg(11)Ni+x wt% Ni(x=100,200) were synthesized by mechanical milling.Effects of Ni content and milling time on the gaseous hydrogen storage thermodynamics and dynamics of alloys were systematically investigated.The hydrogen desorption properties were studied by Sievert apparatus and a differential scanning calorimeter(DSC).Thermodynamic parameters(△H and ΔS) for the hydrogen absorption and desorption of alloys were calculated by Van't Hoff equation.Hydrogen desorption activation energy of alloy hydride was estimated by Arrhenius and Kissinger methods.The increase in Ni content has a slight effect on the thermodynamic properties of alloys,but it significantly enhances the hydrogen absorption and desorption kinetics performance of alloys.Moreover,variation of milling time clearly affects the hydrogen storage properties of alloys.Hydrogen absorption capacity(C(100)~a) and hydrogen absorption saturation ratio(R(10)~a)(a ratio of the hydrogen absorption capacity at 10 min to the saturated hydrogen absorption capacity) have maximum values with milling time varying.But hydrogen desorption ratio(R(20)~d)(a ratio of the hydrogen desorption capacity at 20 min to the saturated hydrogen absorption capacity) always increases with milling time prolonging.Particularly,prolonging milling time from 5 to 60 h makes R(20)~d increase from 10.89% to 16.36% for the x=100 alloy and from 13.93% to 21.68% for the x=200 alloy,respectively.