The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microsco...The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that small amounts of Sb, Sm, and especially Sn can refine the grains of the alloy. High melting point Sb3Y5, Al2Sm, and Nd5Sn3 intermetallic compounds can be formed respectively when Sb, Sm, and Sn are added to the alloy. Sb and Sm can improve the tensile strength of the alloy at ambient and elevated temperatures. The tensile strength of the alloy with Sm addition is the highest at 293 and 423 K. However, the tensile strength of the alloy with Sn addition is the highest at 448 K.展开更多
文摘The microstructure and mechanical properties of Mg-6Al-1.2Y-0.9Nd magnesium alloy with Sb, Sm, or Sn addition were investigated through X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that small amounts of Sb, Sm, and especially Sn can refine the grains of the alloy. High melting point Sb3Y5, Al2Sm, and Nd5Sn3 intermetallic compounds can be formed respectively when Sb, Sm, and Sn are added to the alloy. Sb and Sm can improve the tensile strength of the alloy at ambient and elevated temperatures. The tensile strength of the alloy with Sm addition is the highest at 293 and 423 K. However, the tensile strength of the alloy with Sn addition is the highest at 448 K.