运用被动连接单元减小相邻结构的振动被证明是一种行之有效的手段。将两相邻结构简化为两单自由度体系,用Maxwell模型模拟连接两相邻结构的流体阻尼器,分别导出了在地面白噪声激励下主结构平均振动能量最小或两相邻结构总平均振动能量...运用被动连接单元减小相邻结构的振动被证明是一种行之有效的手段。将两相邻结构简化为两单自由度体系,用Maxwell模型模拟连接两相邻结构的流体阻尼器,分别导出了在地面白噪声激励下主结构平均振动能量最小或两相邻结构总平均振动能量最小这两个控制目标下流体阻尼器优化参数的一般表达式,该优化参数仅与两相邻结构的相对自振频率和相对质量有关,也讨论了两相邻结构的相对自振频率和相对质量对控制效果的影响。最后,运用具有不同相对参数的三类相邻结构在El Centro 1940 NS地震波作用下时域响应的数值结果说明了这种被动优化流体阻尼器能够非常有效地减小在地震作用下两相邻结构的振动响应。展开更多
To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented ...To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.展开更多
文摘运用被动连接单元减小相邻结构的振动被证明是一种行之有效的手段。将两相邻结构简化为两单自由度体系,用Maxwell模型模拟连接两相邻结构的流体阻尼器,分别导出了在地面白噪声激励下主结构平均振动能量最小或两相邻结构总平均振动能量最小这两个控制目标下流体阻尼器优化参数的一般表达式,该优化参数仅与两相邻结构的相对自振频率和相对质量有关,也讨论了两相邻结构的相对自振频率和相对质量对控制效果的影响。最后,运用具有不同相对参数的三类相邻结构在El Centro 1940 NS地震波作用下时域响应的数值结果说明了这种被动优化流体阻尼器能够非常有效地减小在地震作用下两相邻结构的振动响应。
基金National Natural Science Foundation of China under Grant No.51468005 and 51368008Guangxi Natural Science Foundation under Grant No.2014GXNSFAA118315the Innovative Research Team Program of Guangxi University of Science and Technology(2015)
文摘To predict the maximum earthquake response of an SDOF structure with a Maxwell fluid damper or supplemental brace-viscous damper system using the seismic design response spectrum technique,a new approach is presented to determine the first-and second-order equivalent viscous damping and stiffness,the peak responses,and the damper force of the above structure.Based on the fact that the dynamic characteristics of a general linear viscoelastically damped structure are fully determined by its free vibration properties and the relaxation time constants of a Maxwell fluid damper and supplemental brace-viscous damper system in engineering practice are all small,the method of improved multiple time scales and the equivalent criterion in which all free vibration properties are the same are used to obtain the first-and second-order equivalent viscous damping and stiffness of the above structure in closed form.The accuracy of the proposed method is higher and significantly better than that of the modal strain energy method.Furthermore,in the parametric range of the requirements of the Chinese "Code for Seismic Design of Buildings",the error of the proposed second-order equivalent system for the abovementioned engineering structure is not more than 0.5%.