In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating ...In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating the reliability of equipment with a single model may lead to severer errors.However, if lifetime is divided into several different intervals according to the characteristics of its failure rate, piecewise fitting can more accurately approximate the failure rate of equipment. Therefore, in this paper, failure rate is regarded as a piecewise function, and two kinds of segmented distribution are put forward to evaluate reliability. In order to estimate parameters in the segmented reliability function, Bayesian estimation and maximum likelihood estimation(MLE) of the segmented distribution are discussed in this paper. Since traditional information criterion is not suitable for the segmented distribution, an improved information criterion is proposed to test and evaluate the segmented reliability model in this paper. After a great deal of testing and verification,the segmented reliability model and its estimation methods presented in this paper are proven more efficient and accurate than the traditional non-segmented single model, especially when the change of the failure rate is time-phased or multimodal. The significant performance of the segmented reliability model in evaluating reliability of proximity sensors of leading-edge flap in civil aircraft indicates that the segmented distribution and its estimation method in this paper could be useful and accurate.展开更多
Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional catego- ries. We have therefore developed a method based on ...Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional catego- ries. We have therefore developed a method based on protein domain composition and the maximum likelihood estimation (MLE) algorithm to classify proteins according to functions. Using the Saccharomyces cerevisiae genome, we compared the effectiveness of the MLE approach with that of an intui- tive and simple method. The MLE method outperformed the simple method, achieving an estimated specificity of 75.45% and an estimated sensitivity of 40.26%. These results indicate that domain is an important feature of proteins and is closely related to protein function.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 60672164, 60939003, 61079013, 60879001, 90000871)the Special Project about Humanities and Social Sciences in Ministry of Education of China (No. 16JDGC008)+2 种基金National Natural Science Funds and Civil Aviation Mutual Funds (Nos. U1533128 and U1233114)Study On Reusing Sketch User Interface Oriented Design Knowledge (No. 16KJA520003)Six Talent Peaks Project In Jiangsu Province (No. 2016-XYDXXJS-088)
文摘In practice, the failure rate of most equipment exhibits different tendencies at different stages and even its failure rate curve behaves a multimodal trace during its life cycle. As a result,traditionally evaluating the reliability of equipment with a single model may lead to severer errors.However, if lifetime is divided into several different intervals according to the characteristics of its failure rate, piecewise fitting can more accurately approximate the failure rate of equipment. Therefore, in this paper, failure rate is regarded as a piecewise function, and two kinds of segmented distribution are put forward to evaluate reliability. In order to estimate parameters in the segmented reliability function, Bayesian estimation and maximum likelihood estimation(MLE) of the segmented distribution are discussed in this paper. Since traditional information criterion is not suitable for the segmented distribution, an improved information criterion is proposed to test and evaluate the segmented reliability model in this paper. After a great deal of testing and verification,the segmented reliability model and its estimation methods presented in this paper are proven more efficient and accurate than the traditional non-segmented single model, especially when the change of the failure rate is time-phased or multimodal. The significant performance of the segmented reliability model in evaluating reliability of proximity sensors of leading-edge flap in civil aircraft indicates that the segmented distribution and its estimation method in this paper could be useful and accurate.
文摘Prediction of protein functions from known genomic sequences is an important mission of bioinformatics. One approach is to classify proteins into functional catego- ries. We have therefore developed a method based on protein domain composition and the maximum likelihood estimation (MLE) algorithm to classify proteins according to functions. Using the Saccharomyces cerevisiae genome, we compared the effectiveness of the MLE approach with that of an intui- tive and simple method. The MLE method outperformed the simple method, achieving an estimated specificity of 75.45% and an estimated sensitivity of 40.26%. These results indicate that domain is an important feature of proteins and is closely related to protein function.