期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于热图回归的停车位检测算法研究 被引量:1
1
作者 邹斌 黄瑞昌 李文博 《武汉理工大学学报》 CAS 2023年第6期146-152,160,共8页
实际停车场景存在环视视野受限或车位标记被遮挡等问题,现有方法难以有效地检测停车位。为提高自动驾驶车辆在复杂场景中停车位检测的可靠性,提出一种基于热图回归的停车位检测方法,将停车位简化为关键点、入口线和分隔线3个部分,首先... 实际停车场景存在环视视野受限或车位标记被遮挡等问题,现有方法难以有效地检测停车位。为提高自动驾驶车辆在复杂场景中停车位检测的可靠性,提出一种基于热图回归的停车位检测方法,将停车位简化为关键点、入口线和分隔线3个部分,首先将输入图像通过ResNet50和上采样模块提取关键点特征图;然后利用关键点估计模块生成关键点热图以及关键点坐标偏移、方向和长度属性,通过MaxPool提取热图中的峰值,输出置信度大于阈值的关键点;最后整合关键点的属性得到停车位,实现了端到端的停车位检测。实验表明:该方法在视野受限或被遮挡场景下具有良好的检测效果,在ps2.0测试集中实现99.01%的精度和98.27%的召回率,单帧检测速度为19.0 ms。 展开更多
关键词 停车位检测 关键点估计 热图回归 maxpool ResNet50
原文传递
基于改进YOLOv5的鸽子蛋壳破损检测 被引量:2
2
作者 杨航 何皓明 +5 位作者 李滕科 王嘉雯 吴霆 钟乐 邹娟 杨灵 《西南师范大学学报(自然科学版)》 CAS 2023年第8期92-102,共11页
破损鸽蛋检测是鸽蛋分拣过程中最重要的步骤之一.为解决破损鸽蛋实时检测问题,提出一种改进YOLOv5的破损鸽蛋检测方法.首先,为解决鸽蛋细微裂纹检测难的问题,采用Kmeans聚类算法计算细微裂纹锚框适应度,在head模块增加Anchor值为[7,9,13... 破损鸽蛋检测是鸽蛋分拣过程中最重要的步骤之一.为解决破损鸽蛋实时检测问题,提出一种改进YOLOv5的破损鸽蛋检测方法.首先,为解决鸽蛋细微裂纹检测难的问题,采用Kmeans聚类算法计算细微裂纹锚框适应度,在head模块增加Anchor值为[7,9,13,8,9,12]的检测层,从而提高细微裂纹图像的特征提取能力;其次,为解决裂纹特征权重较低的问题,采用融合反向最大池化层的注意力机制,将色值权重提高,从而增强裂纹特征的权重;再次,为解决检测模型负向梯度消失问题,采用Hardswish激活函数的全连接层替换ReLU激活函数的全连接层,解决输入为负时存在的神经元坏死问题,确保神经网络误差正常反馈.最后,基于改进YOLOv5方法建立鸽蛋裂纹识别模型,采用7∶2∶1交叉验证方法对模型进行验证.经对比验证,改进YOLOv5模型的检测效果有明显提升,其准确率、召回率和平均精度分别达到98%,97.3%和98.3%,比原始YOLOv5模型分别提高了14.8%,6.2%和3.4%,检测速度大约为111帧/s,且模型大小仅为4.6Mb,为鸽蛋破损检测提供了一种新方法. 展开更多
关键词 鸽子蛋 YOLOv5 裂纹检测 Hardswish 最大池化层
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部